Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В.Ломоносова Филиал Московского государственного университета имени М.В.Ломоносова в городе Сарове

УТВЕРЖДАЮ Директор филиала МГУ в городе Сарове

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Наименование дисциплины:

Технологии суперкомпьютерного кодизайна

Уровень высшего образования:

магистратура

Направление подготовки / специальность:

02.04.02 "Фундаментальная информатика и информационные технологии" (3++)

Направленность (профиль)/специализация ОПОП:

Суперкомпьютерные технологии и фундаментальная информатика

Форма обучения:

очная

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки 02.04.02 "Фундаментальная информатика и информационные технологии" программы магистратуры - приказ МГУ 30 августа 2019 года № 1054 (в редакции приказа МГУ от 11 сентября 2019 года № 1109)

- 1. Дисциплина относится к базовой части ОПОП ВО. Преподавание дисциплины осуществляется в первом семестре.
- 2. Входные требования для освоения дисциплины (модуля): учащиеся должны владеть знаниями по алгоритмам и алгоритмическим языкам.

3. Результаты обучения по дисциплине (модулю), соотнесенные с требуемыми компетенциями выпускников.

Формируемые компетенции	Планируемые результаты обучения
УК-4. Способен организовывать и осуществлять руководство работой команды (группы), вырабатывая и реализуя командную стратегию для достижения поставленной цели.	Знать: общеорганизационный контекст, который определяет структуру и характер внутриорганизационных коммуникаций; Уметь: анализировать внутреннюю среду и планировать развитие системы организационных коммуникаций. Владеть: навыками критического анализа ситуаций, связанных с решением вопросов организации практического взаимодействия сотрудников организации;
ОПК-1. Способен находить, формулировать и решать актуальные проблемы в области прикладной математики, фундаментальной информатики и информационно-коммуникационных технологий.	Знать: Актуальные проблемы современной прикладной математики и информатики; Уметь: анализировать источники информации для поиска новых актуальных проблем и способов их решения; Владеть: навыками применения передовых технологий для решения задач прикладной математики и информатики.
ОПК-2. Способен применять, совершенствовать и реализовывать новые компьютерные / суперкомпьютерные методы и современные программные комплексы (в том числе современное программное обеспечение отечественного производства) для решения задач профессиональной деятельности.	Знать: компьютерные и суперкомпьютерные методы, программные средства Уметь: применять компьютерные и суперкомпьютерные методы, программные средства для решения задач прикладной математики и информатики; Владеть: способность реализовывать и совершенствовать компьютерные и суперкомпьютерные методы, программные средства для решения задач, связанных с реализацией профессиональной деятельности
ПК-1. Способен в рамках задачи, поставленной специалистом более высокой квалификации,	Знать: Компьютерные технологии, математический аппарат, вычислительные методы для проведения

определять теоретическую основу и методологию исследования, разрабатывать план исследования в области информатики и информационно-коммуникационных технологий.

математического моделирования и обработки данных; типовые методики проведения исследования в области информатики и информационно-коммуникационных технологий; современные методы построения и исследования вычислительных алгоритмов для решения основных классов задач, возникающих в современной науке и технике.

Уметь:

Создавать математические модели реальных явлений и процессов; разрабатывать план исследования математических моделей реальных явлений и процессов; анализировать вычислительные алгоритмы, определять область их применимости; оценивать новизну вычислительных алгоритмов

Владеть:

Способность разрабатывать план исследования в области информатики и информационно-коммуникационных технологий; методами построения и исследования вычислительных алгоритмов для решения основных классов задач, возникающих в современной науке и технике.

ПК-2. Способен в рамках задачи, поставленной специалистом более высокой квалификации, проводить научные исследования и (или) осуществлять разработки в области информатики и информационно-коммуникационных технологий с получением научного и (или) научно-практического результата.

МПК-1 Способность понимать и применять в исследовательской и прикладной деятельности современные суперкомпьютерные технологии, математический аппарат, вычислительные методы для проведения крупномасштабного математического моделирования и обработки данных на современных высокопроизводительных вычислительных

системах.

Знать:

Принципы выбора математических моделей реальных явлений и процессов; типовые методы и алгоритмы исследования моделей реальных явлений и процессов.

Уметь:

создавать алгоритмические и математические модели типовых прикладных задач; проводить формализацию задачи, строить описательные и прогнозные модели с помощью современных программных аналитических средств, оценивать и интерпретировать полученные результаты.

Владеть:

опыт проведения научных исследований в области информатики и информационно-коммуникационных технологий с получением научного или научно-практического результата.

Знать:

компьютерные технологии, математический аппарат, вычислительные методы для проведения крупномасштабного математического моделирования и обработки данных на современных высокопроизводительных вычислительных системах.

Уметь:

применять в исследовательской и прикладной деятельности современные компьютерные технологии, математический аппарат, вычислительные методы для проведения крупномасштабного математического моделирования и обработки данных на современных высокопроизводительных вычислительных системах;

Владеть:

навыками разработки программ для проведения крупномасштабного математического моделирования и обработки данных на современных высокопроизводительных вычислительных системах.

- **4.** Формат обучения: лекции проводятся с использованием компьютерных презентаций и презентационного оборудования, при проведении экзамена применяется коллективный банк тестов по параллельным вычислениям и суперкомпьютерным технологиям СИГМА: http://sigma.parallel.ru.
- **5.** Объем дисциплины (модуля) составляет 3 з.е., в том числе 54 академических часа, отведенных на контактную работу обучающихся с преподавателем, 54 академических часов на самостоятельную работу обучающихся.
- 6. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий.

Наименование и краткое содержание разделов и	Всего	В том числе			
тем дисциплины (модуля),	(часы)	Контактная работа			Самостоятельная работа
		(работа во взаимод			обучающегося,
Форма промежуточной аттестации по		Виды конта	ктной работы,	часы	часы
дисциплине (модулю)					(виды самостоятельной
					работы – эссе, реферат,
					контрольная работа и пр.
					– указываются при необходимости)
					псоологиясти
		Занятия лекционного типа*	Занятия семинарского типа*	Всего	
1. Введение в предмет.	8	6	0	6	2
2. Основные показатели эффективности и	10	4	2	6	6
масштабируемости параллельных программ					
3. Архитектура параллельных вычислительных	11	8	2	10	4
систем.					

4.	Методы оценки производительности	14	4	2	6	10
	параллельных вычислительных систем					
5.	Технологии параллельного программирования:	21	6	2	8	12
	особенности, эффективность, переносимость.					
6.	Компоненты и системное программное	6	4	2	6	4
	обеспечение программное обеспечение					
	суперкомпьютеров					
7.	Введение в теорию анализа структуры программ	16	4	4	8	10
	и алгоритмов					
Пр	Промежуточная аттестация: экзамен		0	4	4	6
И	ГОГО	108	36	18	54	54

- 7. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю)
- 7.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости.

Экзамен в виде тестирования проводится с использованием Коллективного банка тестов по параллельным вычислениям и суперкомпьютерным технологиям СИГМА (http://sigma.parallel.ru).

В тест входит 33 вопроса, на прохождение теста даётся 60 минут. Вопросы к электронному тестированию имеют следующий вид:

В конвейерном устройстве есть 4 ступени, срабатывающих за один такт каждая. За сколько тактов это устройство обработает 5 пар аргументов?

Варианты ответов:

- 1
- 3
- 5
- 7
- 8
- 9
- 15
- Верного ответа нет.

Вопросы к устному экзамену.

- 1. Виды параллельной обработки данных, их особенности.
- 2. Вычислительно сложные задач. Примеры оценки вычислительной сложности реальных задач.
- 3. Микроэлектроника и архитектура: оценка вклада в увеличение производительности компьютеров.
- 4. Архитектура и параметры суперкомпьютерных систем лидеров списка Тор500 (примеры).
- 5. Список Тор500: принципы формирования, структура, параметры.
- 6. Иерархия памяти, локальность вычислений, локальность использования данных.
- 7. Закон Амдала, его следствия, суперлинейное ускорение.

- 8. Показатели качества параллельных программ: ускорение, эффективность реализации, эффективность распараллеливания, масштабируемость.
- 9. Сильная масштабируемость, масштабируемость вширь, слабая масштабируемость. Функция изоэффективности.
- 10. Этапы решения задач на параллельных вычислительных системах.
- 11. Классификация Флинна архитектур вычислительных систем.
- 12. Компьютеры с общей и распределённой памятью. Две задачи параллельных вычислений.
- 13. UMA, NUMA и ccNUMA архитектуры. Компьютеры Cm*, BBN Butterfly.
- 14. Общая структура ccNUMA компьютера на примере Hewlett-Packard Superdome.
- 15. Причины уменьшения производительности компьютеров с общей памятью.
- 16. Коммуникационные топологии. Длина критического пути, связность, сложность.
- 17. Общая структура компьютеров семейства CRAY XT: вычислительные узлы, процессорные элементы, коммуникационная сеть.
- 18. Общая структура компьютеров семейства CRAY XT: аппаратная поддержка синхронизации параллельных процессов.
- 19. Вычислительные кластеры: узлы, коммуникационная сеть (латентность, пропускная способность), способы построения.
- 20. Архитектура суперкомпьютеров СКИФ МГУ «Чебышев», «Ломоносов» и «Ломоносов-2».
- 21. Топология коммуникационной сети «толстое дерево» (fat tree) на примере реализации в суперкомпьютерах СКИФ МГУ «Чебышёв» или «Ломоносов».
- 22. Причины уменьшения производительности компьютеров с распределённой памятью.
- 23. Соотношение между понятиями: функциональное устройство, команда (операция), компьютер и их характеристиками: скалярный, векторный, конвейерный.
- 24. Векторизация программ, необходимые условия векторизации, препятствия для векторизации.
- 25. Общая структура векторно-конвейерного компьютера на примере CRAY C90. Параллелизм в архитектуре компьютера CRAY C90.
- 26. Суперкомпьютеры NEC SX-Aurora TSUBASA.
- 27. Элементы векторной обработки в современных компьютерах. Наборы инструкций MMX, SSE, AVX, AVX2, AVX-512, AltiVec, ARM SVE.
- 28. Причины уменьшения производительности векторно-конвейерных компьютеров.
- 29. Метакомпьютер и метакомпьютинг. Отличительные свойства распределенных вычислительных сред.
- 30. Параллелизм на уровне машинных команд. Суперскалярность, VLIW, EPIC.
- 31. Производительность вычислительных систем, методы оценки и измерения.
- 32. Технологии параллельного программирования: способы и подходы создания параллельных программ.
- 33. МРІ: параллельная программа, сообщение, понятия групп и коммуникаторов.
- 34. MPI: синхронное взаимодействие процессов, виды операторов Send (Bsend, Ssend, Rsend). Тупиковые ситуации.
- 35. МРІ: асинхронное взаимодействие процессов.
- 36. МРІ: коллективные операции.

- 37. МРІ: пересылка разнотипных данных, пересылка упакованных данных.
- 38. ОрепМР: параллельная программа, нити, конструкции для организации параллельных и последовательных секций.
- 39. ОрепМР: основные конструкции для распределения работы между нитями.
- 40. ОрепМР: основные конструкции для синхронизации нитей и работы с общими и локальными данными.
- 41. Аппаратные компоненты суперкомпьютера, ключевые сервисы, их назначение.
- 42. Способы управления ПО на суперкомпьютере, варианты загрузки.
- 43. Графовые модели программ, их взаимосвязь.
- 44. Понятия информационной зависимости и информационной независимости. Примеры использования.
- 45. Граф алгоритма. Критический путь графа алгоритма.
- 46. Эквивалентные преобразования программ. Преобразования циклов (перестановка, распределение, расщепление).
- 47. Виды параллелизма: конечный, массовый, координатный, скошенный.
- 48. Ярусно-параллельная форма графа алгоритма, высота, ширина. Каноническая ЯПФ.
- 49. Зависимость степени параллелизма от формы записи алгоритма (на примере реализации метода Гаусса).

Билет для устного экзамена содержит 2 вопроса, например:

- 1. Виды параллельной обработки данных, их особенности.
- 2. Суперкомпьютеры NEC SX-Aurora TSUBASA.

IIII	ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ результатов обучения (РО) по дисциплине (модулю)						
Оценка	2	3	4	5			
РОи							
соответствующие							
виды оценочных							
средств							
Знания	Отсутствие знаний	Фрагментарные знания	Общие, но не	Сформированные			
			структурированные знания	систематические знания			
Умения	Отсутствие умений	В целом успешное, но не	В целом успешное, но	Успешное и			
		систематическое умение	содержащее отдельные	систематическое умение			
			пробелы умение (допускает				

			неточности	
			непринципиального	
			характера)	
Навыки	Отсутствие навыков	Наличие отдельных навыков	В целом, сформированные	Сформированные навыки
(владения, опыт	(владений, опыта)	(наличие фрагментарного	навыки (владения), но	(владения), применяемые
деятельности)		опыта)	используемые не в активной	при решении задач
		·	форме	

	Соответствие результатов обучения и компетенций, в развитии которых участвует дисциплина (модуль)			
	Результаты обучения	Компетенция, с		
		частичным		
		формированием которой		
		связано достижение		
		результата обучения		
	Знать:			
1	. технологии параллельного программирования;	МПК-1		
2	2. методы оценки производительности;			
3	3. иметь представление о вычислительно сложных задачах из разных областей;			
	1. проблему отображения программ и алгоритмов на архитектуру параллельных компьютеров.			
5	б. методы анализа информационной структуры программ и алгоритмов;			
	Уметь:			
1	. решать задачи на параллельных вычислительных системах.			

	Владеть:	
1.	навыками работы с технологиями параллельного программирования.	
	Знать:	
1.	базовые принципы параллельной обработки данных;	УК-4
2.	основы построения параллельных методов решения задач.	
	Уметь:	
1.	определять параллельную структуру программ и алгоритмов;	
2.	оценивать параллельную сложность алгоритмов и эффективность методов решения задач.	
	Владеть:	
1.	навыками определения, описания и исследования информационной структуры программ и алгоритмов.	

8. Ресурсное обеспечение:

Основная литература:

- 1. Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. СПб.: БХВ-Петербург, 2002. 608 с.
- 2. Антонов А.С. Технологии параллельного программирования MPI и OpenMP: Учеб. пособие. Предисл.: В.А.Садовничий. М.: Издательство Московского университета, 2012.-344 с.-(Серия «Суперкомпьютерное образование»).
- 3. Вл.В.Воеводин, С.А.Жуматий. Вычислительное дело и кластерные системы.-М.: Изд-во МГУ, 2007.-150с. (http://parallel.ru/info/parallel/cluster/)

Дополнительная литература:

1. А.С.Антонов. Параллельное программирование с использованием технологии MPI.-М.: Изд-во МГУ, 2004.-71с. (http://parallel.ru/info/parallel/)

2. Антонов А.С. Параллельное программирование с использованием технологии OpenMP: Учебное пособие.-М.: Изд-во МГУ, 2009. - 77 с. (http://parallel.ru/info/parallel/)

Информационные справочные системы:

Материалы информационно-аналитического центра Parallel.ru

Открытая энциклопедия свойств алгоритмов AlgoWiki (https://algowiki-project.org)

Коллективный банк тестов по параллельным вычислениям и суперкомпьютерным технологиям СИГМА http://sigma.parallel.ru

Лицензионное программное обеспечение, в том числе отечественного производства

При реализации дисциплины может быть использовано следующее программное обеспечение:

- 1. Программный продукт Red Hat Enterprise Linux Server for HPC Compute Node for Power, LE, Self-support
- 2. Программный продукт Red Hat Enterprise Linux Server for HPC Head Node for Power, LE, Standard
- 3. Операционная система SUSE Linux Enterprise Server 11 SP4 for x86_64
- 4. Операционная система Red Hat Enterprise Linux Server 5.0 for x86_64
- 5. Операционная система SUSE Linux Enterprise Server 10 SP3 for ppc64
- 6. Операционная система Ubuntu 18.04.
- 7. Программное обеспечение для виртуализации Oracle VM VirtualBox
- 8. Операционная система ALTLinuxMATEStarterkit 9 лицензияGPL
- 9. Программный продукт JetBrains IntelliJ IDEA Community Edition Free Educational Licenses
- 10. Программный продукт JetBrainsPyCharm Community Edition Free Educational Licenses
- 11. Программный продукт JetBrainsCLion Community Edition Free Educational Licenses
- 12. Программный продукт UPPAAL (http://www.uppaal.org/) академическая лицензия
- 13. Программный продукт Java 8 (64-bit)Oracle Corporation

- 14. Программный продукт Java SE Development Kit 8(64-bit) Oracle Corporation
- 15. Программный продукт NetBeans IDE 8.2 NetBeans.org
- 16. Программный продукт Dev-C++ Bloodshed Software
- 17. Программный продуктCodeBlocksThe Code::Blocks Team
- 18. Программный продукт Free Pascal 3.0.0Free Pascal Team
- 19. Программный продукт Python 3.5.1 (64-bit)Python Software Foundation
- 20. Программный продукт R for Windows 3.2.2 R Core Team
- 21. Программный продукт Haskell Platform 7.10.3 Haskell.org
- 22. Операционная система Microsoft Windows 7 корпоративная академическая лицензия
- 23. Операционная система Microsoft Windows 10 Education академическая лицензия
- 24. Программный продукт Microsoft ProjectProfessional 2013 академическая лицензия
- 25. Программный продукт Microsoft VisioProfessional 2013 академическая лицензия
- 26. Программный продукт Microsoft Visual Studio Professional 2013 RUS [Русский (Россия)] академическая лицензия

Профессиональные базы данных и информационные справочные системы

- 1. http://www.edu.ru портал Министерства образования и науки РФ
- 2. http://www.ict.edu.ru система федеральных образовательных порталов «ИКТ в образовании»
- 3. http://www.openet.ru Российский портал открытого образования
- 4. http://www.mon.gov.ru Министерство образования и науки Российской Федерации
- 5. http://www.fasi.gov.ru Федеральное агентство по науке и инновациям

Материально-техническое обеспечение: аудитория с презентационным оборудованием.

- 9. Язык преподавания русский.
- 10. Преподаватели:

профессор факультета ВМК МГУ, член-корр. РАН, зав.кафедрой Суперкомпьютеров и квантовой информатики Вл.В. Воеводин, вед.н.с. А.С. Антонов, вед.н.с. С.А. Жуматий

11. Авторы программы:

профессор факультета ВМК МГУ, член-корр. РАН, зав.кафедрой Суперкомпьютеров и квантовой информатики Вл.В. Воеводин, вед.н.с. А.С. Антонов