Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В.Ломоносова Филиал Московского государственного университета имени М.В.Ломоносова в городе Сарове

УТВЕРЖДАЮ Директор филиала МГУ в городе Сарове /В.В. Воеводин/

Программа реализации блока «ГОСУДАРСТВЕННАЯ ИТОГОВАЯ АТТЕСТАЦИЯ»

Направление подготовки: **01.04.02 Прикладная математика и информатика Профили подготовки**:

"Вычислительные методы и методика моделирования" "Суперкомпьютерные технологии математического моделирования и обработки данных"

Уровень подготовки: МАГИСТАТУРА

Квалификация выпускника: магистр

Форма обучения: очная

- 1. Наименование: Государственная итоговая аттестация
- 2. Уровень высшего образования: магистратура
- 3. Направление подготовки: 01.04.02 Прикладная математика и информатика

Профиль программы:

реализуется для следующих магистерских программ в рамках направления подготовки 01.04.02 Прикладная математика и информатика:

- "Вычислительные методы и методика моделирования"
- "Суперкомпьютерные технологии математического моделирования и обработки данных"
- **4. Место** дисциплины в структуре ООП: базовая часть ОПОП, блок 4 «Государственная итоговая аттестация, 4 семестр (очная форма обучения).

5. Перечень компетенций, которыми должен овладеть обучающийся в результате освоения образовательной программы:

Выпускник, освоивший программу магистратуры должен обладать следующими универсальными компетенциями:

- УК-1. Способен формулировать научно обоснованные гипотезы, создавать теоретические модели явлений и процессов, применять методологию научного познания в профессиональной деятельности.
- УК-2. Способен использовать философские категории и концепции при решении социальных и профессиональных задач.
- УК-3. Способен разрабатывать и реализовывать проекты, предусматривая и учитывая проблемные ситуации и риски на всех этапах выполнения проекта.
- УК-4. Способен организовывать и осуществлять руководство деятельностью коллектива (группы) на основе социального и профессионального взаимодействия, вырабатывая и реализуя стратегию совместного достижения поставленной цели.
- УК-5. Способен осуществлять письменную и устную коммуникацию на государственном языке Российской Федерации в процессе академического и профессионального взаимодействия с учетом культурного контекста общения на основе современных коммуникативных технологий.
- УК-6. Способен осуществлять письменную и устную коммуникацию на иностранном языке (иностранных языках) в процессе межкультурного взаимодействия в академической и профессиональной сферах на основе современных коммуникативных технологий.
- УК-7. Способен анализировать и учитывать разнообразие культур в процессе межкультурного взаимодействия.
- УК-8. Способен определять и реализовывать приоритеты личностного и профессионального развития на основе самооценки.

Выпускник, освоивший программу магистратуры должен обладать следующими общепрофессиональными компетенциями:

- ОПК-1. Способен формулировать и решать актуальные задачи в области фундаментальной и прикладной математики.
- ОПК-2. Способен совершенствовать и реализовывать новые математические и компьютерные методы решения прикладных задач.

- ОПК-3. Способен создавать и анализировать математические модели профессиональных задач, учитывать ограничения и границы применимости моделей, интерпретировать полученные математические результаты.
- ОПК-4. Способен комбинировать и адаптировать современные информационнокоммуникационные технологии для решения задач в области профессиональной деятельности с учетом требований информационной безопасности.
- ОПК-5. Способен представлять результаты профессиональной деятельности в соответствии с нормами и правилами, принятыми в профессиональном сообществе.

Профессиональные компетенции выпускника, освоившего программу магистратуры

Научно-исследовательский тип задач профессиональной деятельности:

- ПК-1. Способен в рамках задачи, поставленной специалистом более высокой квалификации, определять теоретическую основу и методологию исследования, разрабатывать план исследования в области прикладной математики и информатики;
- ПК-2. Способен в рамках задачи, поставленной специалистом более высокой квалификации, проводить научные исследования и (или) осуществлять разработки в области прикладной математики и информатики с получением научного и (или) научнопрактического результата;
- ПК-3. Способен готовить отдельные документы, связанные с проводимой научноисследовательской работой.

Специализированные компетенции магистерской программы «Вычислительные методы и методика моделирования»

Применять классические и современные математические методы для постановки задач математического моделирования в различных областях науки и техники, осуществлять математическое моделирование физических, технологических и природных процессов (МПК-1).

Использовать современные численные и аналитические методы для решения задач математической физики, алгебры, интегральных и дифференциальных уравнений, в том числе для решения многомерных задач механики и электродинамики сплошных сред, тепломассопереноса, конвекции-диффузии и в других, практически интересных, областях (МПК-2).

Разрабатывать численные методы решения дифференциальных уравнений с частными производными и интегральных уравнений, вариационные и оптимизационные численные алгоритмы с заданными свойствами (МПК-3).

Применять и разрабатывать современные параллельные численные методы для решения конкретных задач математической физики, численного анализа, алгебры на высокопроизводительных вычислительных (МПК-4)

Специализированные компетенции магистерской программы «Суперкомпьютерные технологии математического моделирования и обработки данных»

способность понимать и применять в исследовательской и прикладной деятельности современные суперкомпьютерные технологии, математический аппарат, вычислительные методы для проведения крупномасштабного математического моделирования и обработки данных на современных высокопроизводительных вычислительных системах (МПК-1);

способность разрабатывать и реализовывать масштабируемые параллельные методы и алгоритмы, участвовать в междисциплинарных исследованиях с применением суперкомпьютерных систем (МПК-2);

способность разрабатывать эффективное системное и прикладное программное обеспечение для суперкомпьютерных систем и высокопроизводительных кластеров (МПК-3)

способность проводить теоретическое исследование и экспериментальный анализ эффективности функционирования и методов организации вычислений для многопроцессорных вычислительных систем, проводить оценку масштабируемости параллельных программ (МПК-4).

6. Объем в зачетных единицах с указанием количества академических или астрономических часов, соотнесенные с планируемыми результатами освоения образовательной программы:

Объем государственной итоговой аттестации составляет 9 зачетных единиц, в том числе 6 зачетные единицы - подготовка и защита выпускной квалификационной работы, 3 зачетные единицы - подготовка и сдача государственного экзамена.

7. Входные требования для прохождения итоговой государственной аттестации:

к государственной итоговой аттестации допускается обучающийся, не имеющий академической задолженности и в полном объеме выполнивший учебный план или индивидуальный учебный план по соответствующей образовательной программе высшего образования.

8. Содержание государственной итоговой аттестации:

государственная итоговая аттестация обучающихся организаций проводится в форме: государственного междисциплинарного экзамена по магистерской программе, а также защиты выпускной квалификационной работы.

А. Программа государственного междисциплинарного экзамена:

Государственный междисциплинарный экзамен носит комплексный характер, проводится по одной или нескольким дисциплинами (или) модулям образовательной программы, результаты освоения которых имеют определяющее значение для профессиональной деятельности выпускников.

Б. Программа выпускной квалификационной работы:

Выпускная квалификационная работа представляет собой выполненную обучающимся письменную работу, демонстрирующую уровень подготовленности выпускника к самостоятельной профессиональной деятельности. Защита выпускной квалификационной работы представляет собой выступление обучающегося с устным докладом перед государственной экзаменационной комиссией, об основных результатах подготовленной выпускной квалификационной работы.

9. Учебно-методические материалы для самостоятельной работы обучающегося к подготовке к государственной итоговой аттестации:

А. Подготовка к государственному междисциплинарному экзамену:

Государственный междисциплинарный экзамен проводится в устной форме. В ходе государственного междисциплинарного экзамена обучающийся должен ответить на поставленные в экзаменационном билете вопросы, разработанные в соответствии с программой проведения государственного междисциплинарного экзамена по соответствующей магистерской программе (см. Приложение).

Б. Подготовка выпускной-квалификационной работы (магистерской диссертации):

Требования к оформлению выпускной квалификационной работы:

Результатом научно-исследовательской деятельности обучающегося является выпускная квалификационная работа, выполненная в соответствии с требованиями «Положения о магистерской диссертации факультета ВМК МГУ имени М.В. Ломоносова» (утверждено на заседании Ученого совета ВМК МГУ имени М.В. Ломоносова 30 ноября 2016 г.).

Типовые вопросы к защите выпускной квалификационной работы:

- Обоснуйте актуальность темы выпускной квалификационной работы.
- В чем состоит практическая значимость, выполненной выпускной квалификационной работы?
- В чем новизна результатов работы?
- Сформулируйте цели и задачи выпускной квалификационной работы.

10. Фонд оценочных средств государственной итоговой аттестации:

Критерии и процедуры оценивания обучающегося на государственной итоговой аттестации:

А. Критерии оценивания на государственном междисциплинарном экзамене:

Для оценки готовности выпускника к видам профессиональной деятельности и степени сформированности компетенций государственная экзаменационная комиссия заслушивает устный ответ обучающегося на вопросы, представленные в экзаменационном билете.

Оценка «отлично» ставится если:

- ответы на поставленные вопросы в билете излагаются логично, последовательно и не требуют дополнительных пояснений. Делаются обоснованные выводы;
- демонстрируются глубокие знания в области фундаментальных основ прикладной математики и информатики;
- ответ формулируется развернуто и уверенно, содержит четкие формулировки определений и теорем.

Оценка «хорошо» ставится, если:

- ответы на поставленные вопросы излагаются систематизировано и последовательно;
- материал излагается уверенно;
- экзаменуемый обнаруживает твёрдое знание программного материала;
- ответ демонстрирует способность магистранта применять знание теории к решению задач профессионального характера.

Оценка «удовлетворительно» ставится, если:

- -допускаются нарушения в последовательности изложения;
- -демонстрируется поверхностное знание вопроса;
- -имеются затруднения с выводами;

Оценка «неудовлетворительно» ставится, если:

материал излагается непоследовательно, сбивчиво, не представляет определенной системы знаний;

обучающийся не понимает сущности процессов и явлений.

Б. Критерии оценивания выпускной квалификационной работы:

Для оценки готовности выпускника к видам профессиональной деятельности и степени сформированности компетенций, государственная экзаменационная комиссия заслушивает выступление обучающегося о подготовленной выпускной квалификационной работе.

оценка «отлично» выставляется за глубокое раскрытие темы, качественное оформление

работы, содержательность доклада и презентации;

- оценка «хорошо» выставляется при соответствии вышеперечисленным критериям, но при наличии в содержании работы и её оформлении небольших недочётов или недостатков в представлении результатов к защите;
- оценка «удовлетворительно» выставляется за неполное раскрытие темы, выводов и предложений, носящих общий характер, отсутствие наглядного представления работы и затруднения при ответах на вопросы;
- оценка «неудовлетворительно» выставляется за слабое и неполное раскрытие темы, несамостоятельность изложения материала, выводы и предложения, носящие общий характер, отсутствие наглядного представления работы и ответов на вопросы.

Оценочные средства государственной итоговой аттестации

Показатели достижения результатов обучения при прохождении государственной итоговой аттестации, обеспечивающие определение соответствия (или несоответствия) индивидуальных результатов государственной итоговой аттестации студента поставленным целям и задачам (основным показателям оценки результатов итоговой аттестации) и компетенциям, приведены в таблице.

Код	Наименование компетенции	Сформированные компетенции и показатели оценки результатов	
		Государственный экзамен	Подготовка и защита ВКР
УК-1	Способен формулировать научно обоснованные гипотезы, создавать теоретические модели явлений и процессов, применять методологию научного познания в профессиональной деятельности.		Подготовка и защита ВКР, раздел в ВКР
УК-2	Способен использовать философские категории и концепции при решении социальных и профессиональных задач.		Подготовка и защита ВКР, раздел в ВКР
УК-3	Способен разрабатывать и реализовывать проекты, предусматривая и учитывая проблемные ситуации и риски на всех этапах выполнения проекта.		Подготовка и защита ВКР, раздел в ВКР
УК-4	Способен организовывать и осуществлять руководство деятельностью коллектива (группы) на основе социального и профессионального взаимодействия, вырабатывая и реализуя стратегию совместного достижения поставленной цели.		Подготовка и защита ВКР, раздел в ВКР
УК-5	Способен осуществлять письменную и устную коммуникацию на государственном языке Российской Федерации в процессе академического и профессионального взаимодействия с учетом культурного контекста общения на основе современных коммуникативных технологий.		Подготовка и защита ВКР, раздел в ВКР

УК-6	Способен осуществлять письменную и устную		
	коммуникацию на иностранном языке		
	(иностранных языках) в процессе		
	межкультурного взаимодействия в академической и профессиональной сферах на		Подготовка и
	основе современных коммуникативных		защита ВКР,
	технологий.		раздел в ВКР
УК-7			
У К-/	Способен анализировать и учитывать		Подготовка и защита ВКР,
	разнообразие культур в процессе межкультурного взаимодействия.		раздел в ВКР
УК-8			
УК-8	Способен определять и реализовывать		Подготовка и
	приоритеты личностного и профессионального		защита ВКР,
OFFI 1	развития на основе самооценки.		раздел в ВКР
ОПК-1	Способен формулировать и решать		Подготовка и
	актуальные задачи в области фундаментальной		
	и прикладной математики.	билет	раздел в ВКР
ОПК-2	Способен совершенствовать и реализовывать		Подготовка и
	новые математические и компьютерные	Экзаменационный	
	методы решения прикладных задач.	билет	раздел в ВКР
ОПК-3	Способен создавать и анализировать		
	математические модели профессиональных		_
	задач, учитывать ограничения и границы		Подготовка и
	применимости моделей, интерпретировать		защита ВКР,
	полученные математические результаты.		раздел в ВКР
ОПК-4	Способен комбинировать и адаптировать		
	современные информационно-		
	коммуникационные технологии для решения		
	задач в области профессиональной		Подготовка и
	деятельности с учетом требований		защита ВКР,
	информационной безопасности.		раздел в ВКР
ОПК-5	Способен представлять результаты		
	профессиональной деятельности в		Подготовка и
	соответствии с нормами и правилами,		защита ВКР,
	принятыми в профессиональном сообществе.		раздел в ВКР
ПК-1	Способен в рамках задачи, поставленной		
	специалистом более высокой квалификации,		
	определять теоретическую основу и		
	методологию исследования, разрабатывать	_	Подготовка и
	план исследования в области прикладной	Экзаменационный	
	математики и информатики;	билет	раздел в ВКР
ПК-2	Способен в рамках задачи, поставленной		
	специалистом более высокой квалификации,		
	проводить научные исследования и (или)		
	осуществлять разработки в области		-
	прикладной математики и информатики с		Подготовка и
	получением научного и (или) научно-	Экзаменационный	-
	практического результата;	билет	раздел в ВКР
ПК-3	Способен готовить отдельные документы,		Подготовка и
	связанные с проводимой научно-	Экзаменационный	·
	исследовательской работой.	билет	раздел в ВКР

	Наименование компетенции	Сформированные компетенции и показатели оценки результатов	
Код		Государственный экзамен	-
МПК-1	Применять классические и современные		
	математические методы для постановки задач		
	математического моделирования в различных		
	областях науки и техники, осуществлять		Подготовка и
	математическое моделирование физических,	Экзаменационный	
	технологических и природных процессов	билет	раздел в ВКР
МПК-2	Использовать современные численные и		
	аналитические методы для решения задач		
	математической физики, алгебры,		
	интегральных и дифференциальных		
	уравнений, в том числе для решения		
	многомерных задач механики и		
	электродинамики сплошных сред,		Подготовка и
	тепломассопереноса, конвекции-диффузии и в	Экзаменационный	
	других, практически интересных, областях	билет	раздел в ВКР
МПК-3	Разрабатывать численные методы решения		
	дифференциальных уравнений с частными		
	производными и интегральных уравнений,		Подготовка и
	вариационные и оптимизационные численные	Экзаменационный	защита ВКР,
	алгоритмы с заданными свойствами	билет	раздел в ВКР
МПК-4	Применять и разрабатывать современные		
	параллельные численные методы для решения		Подготовка и
	конкретных задач математической физики,		защита ВКР,
	численного анализа, алгебры на	Экзаменационный	раздел в ВКР
	высокопроизводительных вычислительных	билет	

Специализированные компетенции магистерской программы «Суперкомпьютерные технологии математического моделирования и обработки данных»

Код І	Наименование компетенции	Сформированные и показатели оценки Государственный	результатов
Код П			Подготовка и
		экзамен	защита ВКР
F P P P P P	способность понимать и применять в исследовательской и прикладной деятельности современные суперкомпьютерные технологии, математический аппарат, вычислительные методы для проведения крупномасштабного математического моделирования и обработки данных на современных вычислительных системах	Экзаменационный	Подготовка и защита ВКР, раздел в ВКР

МПК-2	способность разрабатывать и реализовывать		
	масштабируемые параллельные методы и		
	алгоритмы, участвовать в		Подготовка и
	междисциплинарных исследованиях с	Экзаменационный	защита ВКР,
	применением суперкомпьютерных систем	билет	раздел в ВКР
МПК-3	способность разрабатывать эффективное		
	системное и прикладное программное		Подготовка и
	обеспечение для суперкомпьютерных систем и	Экзаменационный	защита ВКР,
	высокопроизводительных кластеров	билет	раздел в ВКР
МПК-4	способность проводить теоретическое		
	исследование и экспериментальный анализ		
	эффективности функционирования и методов		Подготовка и
	организации вычислений для		защита ВКР,
	многопроцессорных вычислительных систем,		раздел в ВКР
	проводить оценку масштабируемости	Экзаменационный	
	параллельных программ	билет	

ПРОГРАММА ПРОВЕДЕНИЯ ГОСУДАРСТВЕННОГО МЕЖДИСЦИПЛИНАРНОГО ЭКЗАМЕНА ПО МАГИСТЕРСКИМ ПРОГРАММАМ

Вопросы к государственному экзамену магистерская программа «Вычислительные методы и методика моделирования»

- 1. Обобщенное решение задачи Дирихле для уравнения второго порядка эллиптического типа.
- 2. Метод Ритца приближенного решения эллиптического уравнения второго порядка.
- 3. Вариационная постановка задачи на собственные значения симметричного положительного операторного уравнения.
- 4. Метод Ритца в проблеме вычисления собственных значений задачи Дирихле.
- 5. Метод конечных элементов для обыкновенного дифференциального уравнения.
- 6. Метод конечных элементов для задачи об изгибе упругого бруса.
- 7. Матрица жесткости и матрица массы линейного конечного элемента.
- 8. Теорема о сходимости метода конечных элементов на линейных треугольниках в случае уравнения Пуассона.
- 9. Вывод уравнения Кортевега-де Фриза.
- 10. Групповой анализ обыкновенных дифференциальных уравнений первого и второго порядка.
- 11. Групповой анализ для уравнения теплопроводности.
- 12. Уравнение Бюргерса и его линеаризация.
- 13. Метод кусочно-постоянных аппроксимаций решения интегральных уравнений Фредгольма 2-го рода.
- 14. Метод конечных элементов решения интегральных уравнений Фредгольма 2-го рода.
- 15. Метод решения сингулярного интегрального уравнения с ядром Гильберта на основе квадратурных формул интерполяционного типа.
- 16. Численное решение интегральных уравнений Фредгольма 2-го рода в случае неоднозначной разрешимости соответствующего однородного уравнения.
- 17. Методы организации параллельных вычислений при суперкомпьютерном решении сеточных задач.
- 18. Разностные схемы для одномерного уравнения конвективной диффузии. Схема с направленными разностями, монотонные схемы первого и второго порядка точности. Схемная диффузии и дисперсии. Анализ диссипативных и дисперсионных свойств схем с направленными и центральными разностями.
- 19. Применение метода гармоник (Фурье, Неймана) для исследования свойств разностных схем. Анализ устойчивости, диссипативных и дисперсионных свойств разностных схем с весами для уравнения конвективной диффузии методом гармоник.
- 20. Разностная схема для уравнения теплопроводности с разрывными коэффициентами. Аппроксимация граничных условий второго рода для уравнения теплопроводности. Анализ теплового баланса в дискретной модели.
- 21. Разностные схемы для уравнений Навье-Стокса в естественных переменных. Разнесенные разностные сетки и сеточные функции. Аппроксимация операторов DIV и GRAD.
- 22. Аппроксимация конвективных членов в уравнениях Навье-Стокса в естественных переменных. Баланс кинетической энергии в дискретном случае. Выполнение условия несжимаемости.
- 23. Задача на собственные значения для эллиптического оператора и МКЭ. Метод обратных итераций.
- 24. МКЭ для уравнения теплопроводности и уравнения колебаний.

- 25. Понятие о векторном МКЭ на примере задачи о диэлектрическом рассеивателе.
- 26. Понятие о МКЭ для интегральных уравнений теории потенциала.
- 27. Сопряженные, симметричные и самосопряженные операторы (случай неограниченных операторов)
- 28. Типы разрешимости операторных уравнений. Условия однозначной и плотной разрешимости.
- 29. Методы теории экстремальных задач.
- 30. Методы теории некорректных задач.
- 31. Методы общей теории итерационных процессов.
- 32. Критерии выбора оптимальной модели из некоторого семейства при описании заданного множества данных наблюдений.

Вопросы к государственному экзамену магистерская программа «Суперкомпьютерные технологии математического моделирования и обработки данных»

- 1. Модель цепной реакции в диффузионном приближении. Расчет критической массы реактора.
- 2. Модель Лотки-Вольтерра. Периодические колебания численности популяций.
- 3. Раскраски графов, хроматическое число графа. Критерий двухцветности графа. Теорема об оценке хроматического числа графа. Теорема Брукса
- 4. Наследственные свойства графов. Теорема об оценке наибольшего числа ребер в графе с наследственным свойством. Теорема о наибольшем числе ребер в графе без треугольников. Теорема Турана
- 5. Симплекс-метод для канонической задачи линейного программирования: идея метода и ее реализация, выбор стартовой угловой точки.
- 6. Итерационные методы минимизации: скорейшего спуска, проекции градиента и Ньютона.
- 9. Классификации архитектур вычислительных систем. Способы организации высокопроизводительных систем и основные принципы функционирования. Характеристики производительности, реальная и пиковая производительность, ускорение и эффективность.
- 10. Основные средства разработки для систем с общей и распределенной памятью. Основные характеристики пакетов OpenMP, Posix Threads, MPI, поддержка многопоточности в современном C++.
- 11. Методы статической и динамической балансировки загрузки процессоров: сдваивания, геометрического параллелизма, коллективного решения, конвейерного параллелизма, диффузной балансировки загрузки.
- 12. Декомпозиция расчетных сеток: критерии и методы.
- 13. Параллельные алгоритмы сортировки данных.
- 14. Клеточные автоматы: определение, элементарные клеточные автоматы, классификация Вольфрама, двумерные клеточные автоматы, типы окрестностей, игра "Жизнь", параллельная реализация.
- 15. Системы Линденмайера: определение, D0L системы, графическая интерпретация, другие типы L-систем: контекстно-свободные, стохастические, параметрические, особенности параллельной реализации.
- 16. Генетические алгоритмы: операторы генетических алгоритмов, особенности кодирования (двоичное, целочисленное, непрерывное, перестановками), сходимость генетических алгоритмов (теория схем), островная модель, клеточные генетические алгоритмы.
- 17. Методы роевой оптимизации: понятие роевых алгоритмов, принципы Рейнолдса, метод роя частиц, муравьиные алгоритмы, алгоритм бактериального поиска, пчелиные алгоритмы.
- 18. Методы организации файловых систем в кластерах, их преимущества и недостатки.
- 19. Возможности управление архитектурой суперкомпьютера внутри пакета SLURM.
- 20. Компиляторы и среды, поддерживающие различные технологии параллельного программирования.
- 21. Архитектура распределенных систем (централизованная, одноранговая, гибридная).
- 22. Алгоритмы взаимного исключения в распределенных системах. Алгоритмы на основе разрешений и алгоритмы с маркером. Централизованный, децентрализованный, алгоритм Лэмпорта, маркерное кольцо.
- 23. Модели согласованности: строгая, последовательная (sequential), причинноследственная (causal), в конечном счете (eventual). САР-теорема Брюера.
- 24. Понятие процесса интеллектуального анализа данных, основные типы решаемых задач, исходных данных и приложений.

- 25. Тематическое моделирование. Метод главных компонент, кластеризация переменных, самоорганизующиеся отображения.
- 26. Задача прогнозирования. Проклятие размерности, переобучение, оценка и выбор моделей, валидация и кросс-валидация.
- 27. Нейронные сети: типовые архитектуры RBF и MLP, ранняя остановка обучения, алгоритмы оптимизации для обучения нейронных сетей.
- 28. Метод опорных векторов для бинарной классификации. Виды ядерных функций. Алгоритмы оптимизации.
- 29. Деревья решений. Алгоритмы и критерии поиска разбиения. Управление процессом роста и обрубания ветвей деревьев.
- 30. Ансамбли моделей. Бустинг и бэгинг ансамбли. Случайный лес. Процедуры и инструменты для поиска выбросов.