Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В.Ломоносова Филиал Московского государственного университета имени М.В.Ломоносова в городе Сарове

УТВЕРЖДАЮ

Директор филиала МГУ в г. Сарове член-корреспондент РАН В.В.Воеводин

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Наименование дисциплины:

ВВЕДЕНИЕ В ФИЗИКУ КОНДЕНСИРОВАННОГО СОСТОЯНИЯ

Уровень высшего образования: Магистратура
Направление подготовки:
03.04.02 Физика
Направленность (профиль) ОПОП:
Лазерная нелинейная оптика и фотоника
Квалификация «Магистр»
Форма обучения: Очная

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки 03.04.02 Физика в редакции приказа по МГУ от 30 декабря 2020 г. №1366.

Авторы-составители:

Д.ф.-м.н., профессор Паращук Дмитрий Юрьевич, кафедра общей физики и волновых процессов физического факультета МГУ

Аннотация к рабочей программе дисциплины

«Введение в физику конденсированного состояния»

В курсе изучаются основы физики конденсированного состояния вещества. Курс состоит из следующих основных разделов: физика химической связи, структура кристаллов, фононы, тепловые свойства, свободный электронный газ, электроны в периодическом потенциале. Представлены основные современные методы исследования структуры и свойств конденсированного состояния вещества.

Разделы рабочей программы

- **1.** Место дисциплины в структуре основной профессиональной образовательной программы высшего образования (ОПОП ВО).
- 2. Входные требования для освоения дисциплины (модуля), предварительные условия (при наличии)
- **3.** Результаты обучения по дисциплине (модулю), соотнесенные с формируемыми компетенциями
- 4. Форма обучения.
- 5. Язык обучения.
- 6. Содержание дисциплины.
- 7. Объем дисциплины
- **8.** Структурированное по темам (разделам) содержание дисциплины (модуля) с указанием отведенного на них количества академических часов и виды учебных занятий
- 9. Текущий контроль и промежуточная аттестация.
- **10.** Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю).
- 11. Шкала оценивания.
- 12. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости.
- 13. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.
- **14.** Материально-техническая база, информационные технологии, программное обеспечение и информационные справочные системы

1. Место дисциплины в структуре ОПОП ВО

В результате освоения дисциплины «Введение в физику конденсированного состояния» обучающийся кроме знаний предмета получает навыки применения ранее полученных знаний для решения новых научных и практических задач.

Дисциплина по выбору читается на 1м году обучения в 1 ом семестре.

2. Входные требования для освоения дисциплины (модуля), предварительные условия Освоение дисциплин «Электромагнетизм», «Электродинамика», «Оптика», «Математический анализ», «Квантовая механика», «Дифференциальные уравнения», «Теория колебаний», «Теория волн».

3. Результаты обучения по дисциплине (модулю), соотнесенные с формируемыми компетенциями

В результате освоения дисциплины у обучающихся должны быть сформированы:

Формируемые	Планируемые результаты обучения по дисциплине (модулю)				
компетенции					
(код компетенции)					
Способность	Знать основные законы и направления современных научных				
использовать знания	исследований в области лазерной физики, нелинейной оптики и				
современных проблем					
и новейших	фотоники.				
достижений в области лазерной физики,	Уметь на основе фундаментальных знаний в области лазерной				
нелинейной оптики и	физики, нелинейной оптики и фотоники, определять возможные				
фотоники в своей научно-	направления научных исследований.				
исследовательской	Владеть необходимой информацией из современных				
деятельности (СПК-1)	отечественных и зарубежных источников по тематике избранного				
, ,	направления исследования в области лазерной физики,				
	нелинейной оптики и фотоники.				
Способность	Знать базовые принципы организации научных исследований с				
организовать и планировать	использованием информационных технологий, основные методики				
физические	работы на современном научном оборудовании в области лазерной				
исследования, ставить конкретные задачи	физики, нелинейной оптики и фотоники.				
научных	Уметь используя знания в области лазерной физики, нелинейной				
исследований в области лазерной	оптики и фотоники проводить научные исследования.				
физики, нелинейной	Владеть навыками планирования научного исследования, анализа				
оптики и фотоники и	получаемых результатов, обобщения, оформления и публичного				
решать их с помощью	получаемых результатов, обобщения, оформления и публичного				
современной	представления полученных результатов.				
аппаратуры,					
оборудования и					

информационных технологий (СПК-2)	
Способность	Знать основные направления инновационного развития в области
определять основные направления	лазерной физики, нелинейной оптики и фотоники.
внедрения научных	Уметь проводить необходимый анализ современных тенденций
результатов в области лазерной физики,	научных инноваций в области лазерной физики, нелинейной
нелинейной оптики и	оптики и фотоники для подготовки предложений по внедрению
фотоники (СПК-3).	полученных научных результатов.
	Владеть методами обоснования возможного применения
	полученных научных результатов с учетом современных
	достижений в области лазерной физики, нелинейной оптики и
	фотоники.

4. Форма обучения: очная

5. Язык обучения: русский

6. Содержание дисциплины:

Тема 1. Классификация видов конденсированного состояния вещества и методы исследования структуры и свойств конденсированных сред

Введение и цель курса. Классификация конденсированных сред по структуре и по свойствам. Макро-, мезо- и нанообъекты. Конденсированные среды разной размерности. Поверхности и границы раздела. Кристаллические и аморфные конденсированные среды. Методы исследования конденсированных сред. Успехи и нерешенные проблемы физики конденсированных сред.

Тема 2. Физика химической связи

Ковалентная связь. Метод молекулярных орбиталей. Молекула водорода. Метод валентных связей, кулоновский и обменный интеграл.

Гибридизация орбиталей. Межмолекулярные силы. Потенциал Леннард-Джонса. Ковалентно-ионная связь. Ионная связь. Металлическая связь.

Тема 3. Структура кристаллов

Кристаллическая решетка. Элементарная и примитивная ячейки. Базис. Решетки Браве. Элементы симметрии. Точечная симметрия. Индексы Миллера. Обратная решетка. Дифракция рентгеновского излучения. Условие Брэгга. Вектор рассеяния. Уравнение Лауэ. Структурный и атомный факторы. Зоны Бриллюэна. Ячейка Вигнера-Зейтца. Дифракция фотонов, электронов и нейтронов. Примеры дифракции в различных типах конденсированных сред; монокристаллы, порошки, тонкие пленки. Источники рентгеновского излучения.

Тема 4. Фононы

Одномерная цепь с одинаковыми атомами. Нормальные моды. Волновой вектор. Одинаковые и различные атомы. Понятие фонона. Частицы и квазичастицы. Импульс и

квазиимпульс. Одномерная цепь с атомами двух типов. Акустические и оптические и фононы в 1D кристаллах. Примеры фононов в 3D кристаллах. Оптика фононов; резонансное взаимодействие, поляритоны, неупругое рассеяние света. Ангармонизм и время жизни фононов.

Тема 5. Тепловые свойства

Теплоемкость. Экспериментальные данные. Закон Дюлонга и Пти. Расчет теплоемкости. Плотность состояний в 1D и 3D системах. Модель Дебая. Температура Дебая. Теплопроводность. Модель идеального газа. Длина свободного пробега фононов. Температурная зависимость теплопроводности изоляторов. Процессы переброса.

Тема 6. Свободный электронный газ

Модель свободного электронного газа. Энергия Ферми. Распределение Ферми-Дирака. Электронный вклад в тепловые свойства металлов. Электрическая проводимость и сопротивление. Закон Ома. Эффект Холла.

Тема 7. Электроны в периодическом потенциале

Теорема Блоха. Модель почти свободных электронов. Зонная структура кристаллов. Металлы и изоляторы. Эффективная масса. Модель сильно-связанных электронов. Электроны проводимости и дырки.

7. Объем дисциплины

			объем учебной нагрузки в ак. ч				
				в том числ	ıe		
		ax	P	ay,	ц. за	нятий	та
	Трудоемкость	в зачетных единицах	Общая трудоемкость	Общая аудиторная нагрузка	Лекций	Семинаров	Самостоятельная работа студентов
НАЗВАНИЕ ДИСЦИПЛИНЫ							
Введение в физику конденсированного состояния	2	2	72	36	18	18	36

8. Структурированное по темам (разделам) содержание дисциплины (модуля) с указанием отведенного на них количества академических часов и виды учебных занятий

Изучение курса «Введение в физику конденсированного состояния» включает в себя лекции, на которых рассматривается теоретическое содержание курса, обсуждение вопросов, обозначенных в темах курса; самостоятельную работу, заключающуюся в подготовке к

занятиям, выполнение домашних заданий и выступление с краткими презентациями по заранее выбранным темам. По вопросам, вызывающим затруднения, проводятся консультации.

79		Виды учебной нагрузки и их трудоемкость, часы					Форма текущего контроля успеваемости и промежуточной аттестации
№ темы	Наименование раздела дисциплины		Лекции	Научно- практические	Семинары	Самостоятельная работа	
1	Классификация видов конденсированного состояния вещества и методы исследования структуры и свойств конденсированных сред	8	2		2	4	
2			2	-	2	4	
3	Структура кристаллов	12	3	-	3	6	Собеседование, опрос
4	4 Фононы5 Тепловые свойства		3		3	4	r
5			3		3	6	
6	Свободный электронный газ	8	2		2	4	
7	Электроны в периодическом потенциале	10	3		3	4	
	Промежуточная аттестация	4				4	Экзамен в устной форме
	ИТОГО:	72	18	-	18	36	

9. Текущий контроль и промежуточная аттестация.

Текущий контроль по дисциплине «Введение в физику конденсированного состояния» осуществляется на лекциях и заключается в оценке активности слушателей, качества ответов на вопросы лектора, аргументированности позиции студента, оценивается широта используемых им теоретических знаний. В семестре в конце некоторых лекций проводятся несколько коротких контрольных работ (10-15 минут).

Промежуточная аттестация по дисциплине «Введение в физику конденсированного состояния» проводится в форме экзамена. Результаты сдачи экзамена оцениваются по шкале «неудовлетворительно», «удовлетворительно», «хорошо», «отлично». Оценки «отлично», «хорошо», «удовлетворительно» означают успешное прохождение промежуточной аттестации.

10. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю).

Требования к структуре и содержанию фонда оценочных средств текущего контроля и промежуточной аттестации по дисциплине

Перечень оценочных средств, применяемых на каждом этапе проведения текущего контроля и промежуточной аттестации по дисциплине, представлены в таблице

Наименование	To	Представление				
оценочного средства	Краткая характеристика оценочного средства	оценочного				
одоно шого сродотам		средства в фонде				
	Оценочные средства текущего контроля					
	Средство контроля, организованное как	Перечень тем,				
Taylamyyyaayyy	короткий письменный ответ на поставленный	изучаемых в				
Тематический опрос	вопрос по тематике предыдущей или текущей	рамках				
(в форме ответов на	лекции, рассчитанное на выяснение объема и	дисциплины				
вопросы)	качества знаний, усвоенных обучающимися					
	по определенному разделу, теме, проблеме.					
	Средство контроля, организованное как	Перечень тем,				
	свободная беседа, дискуссия по тематике	изучаемых в				
0.5	изучаемой дисциплины, рассчитанное на	рамках				
Собеседование	выяснение объема знаний обучающегося по	дисциплины				
(в форме беседы,	всем изученным разделам, темам; свободного					
дискуссии по теме)	использования терминологии для					
	аргументированного выражения собственной					
	позиции.					
Оценочные средства промежуточной аттестации						
	Средство, позволяющее оценить	Перечень вопросов				
Короткая письменная	сформированность систематических	к экзамену				
работа	представлений о методах научно-					
	исследовательской деятельности.					

11. Шкала оценивания.

Планируемые	Критерии оценивания результатов обучения					
результаты	2	3	4	5		
обучения						
ЗНАТЬ:	Отсутствие знаний	В целом	В	Успешные и		
основные	основных понятий,	успешные, но	целом успешно	систематическ		
понятия,	приближений,	не	е, но	ие знания		
приближения,	моделей и методов	систематическ	содержащие	основных		
модели и	физики	ие знания	отдельные	понятий,		
методы физики	конденсированного	основных	пробелы	приближений,		
конденсирован	состояния вещества	понятий,	знания	моделей и		
ного состояния		приближений,	основных	методов		
вещества		моделей и	понятий,	физики		
ОПК-3.Б 3-6		методов	приближений,	конденсирован		
		физики	моделей и	ного состояния		
		конденсирован	методов	вещества		

		ного состояния вещества	физики конденсирован ного состояния вещества	
УМЕТЬ: использовать основные приближения и модели для решения различных задач в области физики конденсирован ного состояния вещества ОПК-3.Б У-6	Отсутствие умения использовать основные приближения и модели для решения различных задач в области физики конденсированного состояния вещества	В целом успешное, но не систематическ ое умение использовать основные приближения и модели для решения различных задач в области физики конденсирован ного состояния вещества	В целом успешно е, но содержащее отдельные пробелы в использовании основных приближений и моделей для решения различных задач в области физики конденсирован ного состояния	Успешное и систематическ ое в использовании основных приближений и моделей для решения различных задач в области физики конденсирован ного состояния вещества
ВЛАДЕТЬ: основными методами для анализа свойств и структуры конденсирован ного состояния вещества ОПК-3.Б В-6	Отсутствие/фрагмен тарное владение основными методами для анализа свойств и структуры конденсированного состояния вещества	В целом успешное, но не систематическ ое владение основными методами для анализа свойств и структуры конденсирован ного состояния вещества	вещества В целом успешно е, но содержащее отдельные пробелы владение основными методами для анализа свойств и структуры конденсирован ного состояния вещества	Успешное и систематическ ое владение основными методами для анализа свойств и структуры конденсирован ного состояния вещества

12. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости.

Материалы текущего контроля успеваемости обучающихся:

Пример:

- 1. Какая характерная энергия фотонов необходима для наблюдения дифракции в конденсированных средах?
- 2. Для двумерной кристаллической решетки дать индексы Миллера плоскостей, представленным на прилагаемом рисунке.
- **3.** На рисунке показана одномерная кристаллическая решетка. Изобразите обратную решетку и первую зону Бриллюэна.

- **4.** Изобразите законы дисперсии фононов для 1D цепи с одним атомом в элементарной ячейке, массы атомов отличаются в 2 раза. Как определить скорость звука по закону дисперсии? В какой из цепочек выше скорость звука и почему?
- **5.** На рисунке показаны несколько дисперсионных зависимостей для квазичастиц. Для каких плотность состояний будет выше? Какие (квази)частицы могут иметь данные законы дисперсии? Зависит ли плотность состояний от k для указанных законов дисперсии? Если да, то где она минимальна и максимальна?

13. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.

Материалы промежуточного контроля успеваемости обучающихся в форме экзамена:

- 1. Метод валентных связей. Метод молекулярных орбиталей. Энергия диссоциации.
- 2. Типы межмолекулярных связей.
- 3. Кристаллическая решетка. Примитивная ячейка.
- 4. Базис. Ячейка Вигнера-Зейтца. Решетка Браве. Индексы Миллера.
- 5. Обратная решетка. Зона Бриллюэна
- 6. Фононы. Квазичастицы. Квазиимпульс. Групповая скорость квазичастицы.
- 7. Оптические и акустические фононы.
- 8. Плотность состояний.
- 9. Решеточная и электронная теплоемкость/теплопроводность, их зависимость от температуры.
- 10. Модель Дебая. Температура Дебая.
- 11. Модель свободного электронного газа, ее приближения.
- 12. Энергия(уровень) Ферми. Химический потенциал. Распределение Ферми-Дирака.
- 13. Эффективная масса.
- 14. Закон Ома.
- 15. Эффект Холла.
- 16. Электрон проводимости. Понятие дырки.
- 17. Теорема Блоха. Блоховские осцилляции.
- 18. Модель почти свободных электронов.
- 19. Зонная структура. Запрещенные и разрешенные зоны.
- 20. Диэлектрики. Полупроводники. Металлы.

14. Материально-техническая база, информационные технологии, программное обеспечение и информационные справочные системы

Основная литература

- 1. Ч. Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978.
- 2. А.С. Давыдов. Теория твердого тела. М.: Наука, 1976.
- 3. В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников. М.: Наука, 1977.
- 4. Дж. Займан. Принципы теории твердого тела. М.: Мир, 1966.
- 5. Ч. Киттель. Квантовая теория твердых тел. М.: Наука, 1967.

Дополнительная литература

- 1. А.И. Ансельм, Введение в теорию полупроводников (2-е изд.). М.: Наука, 1978
- 2. М.А. Порай-Кошиц, Основы структурного анализа химических соединений (изд. 2-е, перер. и доп.). М.: Высшая школа, 1989.
- 3. Ч. Коулсон, Валентность, М.: Мир, 1965.
- 4. Дж. Маррел, С.Кеттл, Дж. Теддер, Химическая связь, М.: Химия, 1980.

5. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике: Т.8,9: Квантовая механика. М.: URSS, 2014.

Интернет-ресурсы.

• http://eqworld.ipmnet.ru/ru/library/physics/solidstate.htm

Материально-техническое обеспечение

В соответствии с требованиями п.5.3. образовательного стандарта МГУ по направлению подготовки «Физика».

Для лекционной части курса требуются аудитория, оборудованная мультимедийным проектором, интерактивной доской, и управляющим компьютером. Также необходимо наличие экрана и обычной учебной доски.