Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В.Ломоносова Филиал Московского государственного университета имени М.В.Ломоносова в городе Сарове

УТВЕРЖДАЮ

Директор филиала МГУ в г. Сарове член-корреспондент РАН В.В.Воеводин

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Наименование дисциплины:

ВЕЩЕСТВО В СИЛЬНОМ ЛАЗЕРНОМ ПОЛЕ

Уровень высшего образования: Магистратура
Направление подготовки:
03.04.02 Физика
Направленность (профиль) ОПОП:
Лазерная нелинейная оптика и фотоника
•
Квалификация «Магистр»
Форма обучения: Очная

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки 03.04.02 Физика в редакции приказа по МГУ от 30 декабря 2020 г. №1366.

Авторы-составители:

К.ф.-м.н., доцент Федотов Андрей Борисович, кафедра общей физики и волновых процессов физического факультета МГУ

Аннотация к рабочей программе дисциплины

«Вещество в сильном лазерном поле»

В курсе рассматриваются подходы и модели взаимодействия электромагнитного излучения с веществом в различных состояниях — газообразном, плазменном и структурно организованном. Дисциплина по выбору читается на 2м году обучения в 1 ом семестре

Кратко дается обзор принципов генерации лазерного излучения. Определяются основные критерии и принципы формирования сверхсильных световых полей на основе генерации сверхкоротких лазерных импульсов, приводятся схемы построения современных мощных лазерных систем, генерирующих сверхсильные оптические поля. Определяются критерии и модели воздействия лазерных полей на вещество в зависимости от интенсивности поля, при этом уделяется внимание особенностям взаимодействия сверхкоротких импульсов с предельными интенсивностями. Описываются отличия лазерного и теплового воздействия на вещество. Рассматриваются вопросы лазерной локации и возможности разрушения объектов на больших расстояниях с помощью мощных лазерных импульсов. Дается обзор свойства плазмы (лэнгмюровские колебания, степень ионизации (модель Саха), столкновения частиц и явления переноса в плазме и др.). Большое внимание в курсе посвящено вопросам распространения электромагнитных волн в плазме и связанных эффектов (обратнотормозное поглощение, высокочастотный и низкочастотный скин-эффекты, дисперсия и поглощение в плазме). Рассматриваются вопросы оптического пробоя вещества лазерным излучением, описываются ударная (лавинная), туннельная и многофотонная ионизации, а также принципиальные отличия этих режимов, и необходимые условия для их осуществления. Предлагается знакомство с основными принципами лазерного термоядерного синтеза. Рассматриваются режимы и перспективы осуществления управляемого термоядерного синтеза с использованием сверхкоротких лазерных импульсов. Подробно изложены вопросы механического воздействия света на вещество, оптическая левитация и резонансное охлаждение частиц.

Разделы рабочей программы

- **1.** Место дисциплины в структуре основной профессиональной образовательной программы высшего образования (ОПОП ВО).
- 2. Входные требования для освоения дисциплины (модуля), предварительные условия (при наличии)
- **3.** Результаты обучения по дисциплине (модулю), соотнесенные с формируемыми компетенциями
- 4. Форма обучения.
- 5. Язык обучения.
- 6. Содержание дисциплины.
- 7. Объем дисциплины
- **8.** Структурированное по темам (разделам) содержание дисциплины (модуля) с указанием отведенного на них количества академических часов и виды учебных занятий
- 9. Текущий контроль и промежуточная аттестация.
- **10.** Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю).
- 11. Шкала оценивания.

- **12.** Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости.
- **13.** Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.
- **14.** Материально-техническая база, информационные технологии, программное обеспечение и информационные справочные системы

1. Место дисциплины в структуре ОПОП ВО

В результате освоения дисциплины «Основы фотоники» обучающийся кроме знаний предмета получает навыки применения ранее полученных знаний для решения новых научных и практических задач.

2. Входные требования для освоения дисциплины (модуля), предварительные условия Освоение дисциплин «Электромагнетизм», «Электродинамика», «Оптика», «Математический анализ», «Квантовая механика», «Дифференциальные уравнения», «Теория колебаний», «Теория волн».

3. Результаты обучения по дисциплине (модулю), соотнесенные с формируемыми компетенциями

В результате освоения дисциплины у обучающихся должны быть сформированы:

Формируемые	Планируемые результаты обучения по дисциплине (модулю)
компетенции	
(код компетенции)	
Способность	Знать основные законы и направления современных научных
использовать знания современных проблем	исследований в области лазерной физики, нелинейной оптики и
и новейших	фотоники.
достижений в области лазерной физики,	Уметь на основе фундаментальных знаний в области лазерной
нелинейной оптики и	физики, нелинейной оптики и фотоники, определять возможные
фотоники в своей научно-	направления научных исследований.
исследовательской	Владеть необходимой информацией из современных
деятельности (СПК-1)	отечественных и зарубежных источников по тематике избранного
	направления исследования в области лазерной физики,
	нелинейной оптики и фотоники.
Способность	Знать базовые принципы организации научных исследований с
организовать и планировать	использованием информационных технологий, основные методики
физические	работы на современном научном оборудовании в области лазерной
исследования, ставить конкретные задачи	физики, нелинейной оптики и фотоники.
научных	Уметь используя знания в области лазерной физики, нелинейной
исследований в области лазерной	оптики и фотоники проводить научные исследования.
физики, нелинейной	Владеть навыками планирования научного исследования, анализа
оптики и фотоники и решать их с помощью	получаемых результатов, обобщения, оформления и публичного
современной	представления полученных результатов.
аппаратуры,	
оборудования и	
информационных	
технологий (СПК-2)	

Способность определять основные направления внедрения научных результатов в области лазерной физики, нелинейной оптики и фотоники (СПК-3).

Знать основные направления инновационного развития в области лазерной физики, нелинейной оптики и фотоники.

Уметь проводить необходимый анализ современных тенденций научных инноваций в области лазерной физики, нелинейной оптики и фотоники для подготовки предложений по внедрению полученных научных результатов.

Владеть методами обоснования возможного применения полученных научных результатов с учетом современных достижений в области лазерной физики, нелинейной оптики и фотоники.

4. Форма обучения: очная

5. Язык обучения: русский

6. Содержание дисциплины:

Тема 1. Введение. Основные принципы получения лазерного излучения.

Законы теплового излучения. Формула Планка и следствие из нее в макро- и микромире. Закон Стефана-Больцмана. Формула Планка в представлении Эйнштейна. Вынужденные и спонтанные переходы. Усиление света с учетом спонтанного излучения как следствие формулы Планка. Методы модуляции добротности и синхронизации мод. Примеры современных лазерных систем. Принципиальное отличие лазерного нагрева от нагрева тепловым источником. Критерии разделения режимов взаимодействия излучения по интенсивности поля

Тема 2. Тепловое и пондеромоторное действие лазерного излучение на вещество.

Действие лазерного излучения на свободный электрон. Квантовая и классическая картина поглощения и рассеяния электроном лазерного излучения. Обратнотормозное поглощение лазерного излучения в плазме: роль дефазирующих столкновений. Предельные характеристики нарастания энергии электрона в поле электромагнитного излучения.

Тема 3. Основные свойства и характеристики плазмы.

Методы создания плазменных сред. Основные свойства: коллективность, квазинейтральность, плазменные колебания, дебаеевский радиус и др. Критерии существования и идеальности плазмы. Зависимость степени ионизации от температуры. Вырожденная (квантовая) плазма. Давление вырожденной плазмы. Примеры и свойства электронной плазма в твердых телах - полупроводниках и диэлектриках. Свободные заряды в стоячей электромагнитной волне.

Тема 4. Эффекты распространения лазерного излучения в плазме и его воздействия на нее.

Волновое уравнение и система уравнений Максвелла. Плазма в постоянном и переменном электромагнитном поле. Случай высоких и низких частот. Основные величины, характеризующие столкновения в плазме (длина свободного пробега, сечение столкновений.

кулоновский логарифм, максвелавская релаксация). Электронная и ионная температура. Роль дефазирующих столкновений, обратнотормозное поглощение. Давление плазмы. Образование плазмы при стационарном нагреве металлической мишени. Давление однонаправленного пучка фотонов. Управление механическим перемещением тел. Лазерный пинцет. Реактивное давление плазмы.

Тема 5. Эффекты ионизация структурно-организованного вещества лазерным изучением мощным электромагнитным полем

Основные явления при взаимодействии атома с лазерным полем. Квантовая картина, туннельный эффекта. Оптический пробой прозрачных диэлектриков. Многофотонная и туннельная ионизация, параметр Келдыша. Природа обоих типов ионизации и необходимые условия для их реализации. Механизм развития лавинной ионизации. Пороговая интенсивность ионизации и ее зависимость от давления газа, длительности лазерного импульса и длины волны. Основные вопросы термоядерного синтеза. Туннельный эффект в реакциях термоядерного синтеза, критерий Лоусона. История ЛТС. Лазерная абляция и имплозия. Инерционное удержание плазмы. «Быстрый поджиг» термоядерной реакции. Примеры взаимодействия лазерного излучения с релятивистскими интенсивностями с вешеством.

7. Объем дисциплины

					объем учебной нагрузки в ак. часах				. часах
	ь		ь ицах	ь	В том числе ауд. занятий				бота
	Трудоемкость	в зачетных единицах	Общая трудоемкость	Общая аудиторная нагрузка	Лекций	Семинаров	Самостоятельная работа студентов		
НАЗВАНИЕ ДИСЦИПЛИНЫ									
Вещество в сильном лазерном поле	2		72	36	18	18	36		

8. Структурированное по темам (разделам) содержание дисциплины (модуля) с указанием отведенного на них количества академических часов и виды учебных занятий

Изучение курса «Вещество в сильном лазерном поле» включает в себя лекции, на которых рассматривается теоретическое содержание курса, обсуждение вопросов, обозначенных в темах дисциплины; самостоятельную работу, заключающуюся в подготовке к лекционным занятиям, выполнения домашних заданий. По вопросам, вызывающим затруднения, проводятся консультации.

19		Виды учебной нагрузки и их трудоемкость, часы				Форма текущего контроля успеваемости и промежуточной аттестации		
Nº TEM	Наименование раздела дисциплины		Лекции	Научно- практические	Семинары	Самостоятельная работа		
1	Введение. Основные принципы получения лазерного излучения	8	2	-	2	4		
2	Тепловое и пондеромоторное действие лазерного излучение на вещество	12	3	-	3	6		
3	Основные свойства и характеристики плазмы	12	3	-	3	6	Собеседование,	
4	Эффекты распространения лазерного излучения в плазме и его воздействия на нее.	18	5	-	5	8	опрос	
5	Эффекты ионизация структурно-организованного вещества лазерным изучением мощным электромагнитным полем	18	5	-	5	8		
	Промежуточная аттестация	4				4	Экзамен в устной форме	
	итого:		18	-	18	36		

9. Текущий контроль и промежуточная аттестация.

Текущий контроль по дисциплине «Вещество в сильном лазерном поле» осуществляется на лекциях и заключается в оценке активности слушателей, качества ответов на вопросы лектора, аргументированности позиции студента, оценивается широта используемых им теоретических знаний. В семестре в конце некоторых лекций проводятся несколько коротких контрольных работ (10-15 минут).

Промежуточная аттестация по дисциплине «Вещество в сильном лазерном поле» проводится в форме экзамена. Результаты сдачи экзамена оцениваются по шкале «неудовлетворительно», «удовлетворительно», «хорошо», «отлично». Оценки «отлично», «хорошо», «удовлетворительно» означают успешное прохождение промежуточной аттестации.

10. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю).

Требования к структуре и содержанию фонда оценочных средств текущего контроля и промежуточной аттестации по дисциплине

Перечень оценочных средств, применяемых на каждом этапе проведения текущего контроля и промежуточной аттестации по дисциплине, представлены в таблице

Наименование		Представление			
оценочного средства	Краткая характеристика оценочного средства	оценочного			
оцено шого средства		средства в фонде			
	Оценочные средства текущего контроля				
	Средство контроля, организованное как	Перечень тем,			
Taylamyyyaayyy	короткий письменный ответ на поставленный	изучаемых в			
Тематический опрос	вопрос по тематике предыдущей или текущей	рамках			
(в форме ответов на	лекции, рассчитанное на выяснение объема и	дисциплины			
вопросы)	качества знаний, усвоенных обучающимися				
	по определенному разделу, теме, проблеме.				
	Средство контроля, организованное как	Перечень тем,			
	свободная беседа, дискуссия по тематике	изучаемых в			
Cofoon	изучаемой дисциплины, рассчитанное на	рамках			
Собеседование	выяснение объема знаний обучающегося по	дисциплины			
(в форме беседы,	всем изученным разделам, темам; свободного				
дискуссии по теме)	использования терминологии для				
	аргументированного выражения собственной				
	позиции.				
Оценочные средства промежуточной аттестации					
	Средство, позволяющее оценить	Перечень вопросов			
Короткая письменная	сформированность систематических	к экзамену			
работа	представлений о методах научно-	-			
	исследовательской деятельности.				

11. Шкала оценивания.

Планируемые	Критерии оценивания результатов обучения					
результаты	2	3	4	5		
обучения						
ЗНАТЬ:	Отсутствие знаний	В целом	В	Успешные и		
основные	основных законов и	успешные, но	целом успешн	систематическ		
законы и	моделей	не	ое, но	ие знания		
модели	взаимодействия	систематическ	содержащее	основных		
взаимодействи	вещества с лазерным	ие знания	отдельные	законов и		
я вещества с	излучением	основных	пробелы	моделей		
лазерным		законов и	знания	взаимодействи		
излучением		моделей	основных	я вещества с		
ОПК-3.Б 3-6		взаимодействи	законов и	лазерным		
		я вещества с	моделей	излучением		
		лазерным	взаимодействи			
		излучением	я вещества с			
			лазерным			
			излучением			

УМЕТЬ:	Отсутствие умения	В целом	В	Успешное и
оценивать	оценивать	успешное, но	целом успешн	систематическ
результаты	результаты	не	ое, но	ое умение
воздействия	воздействия	систематическ	содержащее	оценивать
лазерных	лазерных импульсов	ое умение	отдельные	результаты
импульсов и	и непрерывного	оценивать	пробелы	воздействия
непрерывного	излучения на	результаты	умение	лазерных
излучения на	объекты в различных	воздействия	оценивать	импульсов и
объекты в	состояниях	лазерных	результаты	непрерывного
различных		импульсов и	воздействия	излучения на
состояниях		непрерывного	лазерных	объекты в
		излучения на	импульсов и	различных
ОПК-3.Б У-6		объекты в	непрерывного	состояниях
		различных	излучения на	
		состояниях	объекты в	
			различных	
			состояниях	
ВЛАДЕТЬ:	Отсутствие/фрагмент	В целом	В	Успешное и
навыками	арное владение	успешное, но	целом успешн	систематическ
оценки и	навыками оценки и	не	ое, но	ое владение
расчета	расчета процессов	систематическ	содержащее	навыками
процессов при	при поглощении	ое владение	отдельные	оценки и
поглощении	электромагнитного	навыками	пробелы	расчета
электромагнит	излучения и	оценки и	владение	процессов при
НОГО	ионизации вещества	расчета	навыками	поглощении
излучения и	в поле мощных	процессов при	оценки и	электромагнит
ионизации	лазерных импульсов	поглощении	расчета	НОГО
вещества в		электромагнит	процессов при	излучения и
поле мощных		НОГО	поглощении	ионизации
лазерных		излучения и	электромагнит	вещества в
импульсов		ионизации	НОГО	поле мощных
ОПК-3.Б В-6		вещества в	излучения и	лазерных
		поле мощных	ионизации	импульсов
		лазерных	вещества в	
		импульсов	поле мощных	
			лазерных	
			импульсов	

12. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости.

Материалы текущего контроля успеваемости обучающихся:

Пример:

- **1.** Оценить давление света на макроскопические тела по формуле Максвелла-Бертоли. Оценить возможность оптической левитация прозрачных частиц с заданными параметрами.
- **2.** Оценить предельную энергию и температуру электронов в плазме с учетом столкновений. Построить приблизительный график зависимости энергии свободного сталкивающегося электрона от времени воздействия лазерного излучения с заданной интенсивностью и длиной волны.

- **3.** Оценить возможность усиления света в вырожденной электронно-дырочная плазма в полупроводниковых материалах с заданными параметрами.
- 4. Получение плотной высокотемпературной плазмы методом абляционной имплозии полой сферической мишени при лазерном термоядерном синтезе (ЛТС). Вывести зависимость абляционного давления и температуры плазменного сгустка от интенсивности и длины волны лазерного излучения, облучающего мишень.
- 5. Оценить электропроводность полностью ионизованной водородной плазмы с заданной концентрацией электронов. Найти время электрон-ионных столкновений, длину свободного пробега.

13. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.

Материалы промежуточного контроля успеваемости обучающихся в форме экзамена:

- Формула Планка как распределение по частотам спектрально-объемной плотности энергии при заданной температуре. Физический смысл сомножителей. Формула Планка как спектральная испускательная способность (распределение по частотам). Распределение по длинам волн.
- Закон Стефана-Больцмана. Предельная стационарная температура нагрева мишени тепловым источником излучения с известной температурой (например, Солнце).
- Формула Планка в представлении Эйнштейна. Вероятности вынужденного и спонтанного переходов. Коэффициенты Эйнштейна В и А, их физический смысл и связь между собой.
- Вероятность вынужденного излучения $w_{21}[\text{сек}^{-1}]$, выраженная через число фотонов в моде и коэффициент Эйнштейна $A[\text{сек}^{-1}]$. Сечение $\sigma_{21}[\text{м}^2]$ вынужденного перехода при взаимодействии лазерного излучения (длина волны λ , ширина спектральной линии Δv_L) с двухуровневой квантовой системой. Коэффициент усиления (или поглощения).
- Плазма. Определение, основные свойства и характеристики. Способы получения плазмы.
- Дебаевский радиус как функция температуры и концентрации зарядов, его физический смысл.
- Критерий существования плазмы (условие коллективности). Характер зависимости этого критерия от температуры электронов T_e [K], их концентрации N_e [м⁻³] и концентрации нейтралов N_n [м⁻³].
- Вырожденная (квантовая) плазма (определение). Переход классической плазмы в вырожденную (условие вырождения). Концентрация вырождения для электронов при заданной температуре, её зависимость от температуры.
- Максимальный импульс электрона в вырожденной плазме как функция концентрации электронов. Энергия (уровень) Ферми, средняя энергия электронов.
- Давление вырожденной плазмы как функция концентрации электронов.
- Вырожденная электронно-дырочная плазма (ЭДП) в полупроводниковых лазерах с оптической (лазерной) накачкой. Условие усиления света: пороговая интенсивность накачки $I_H[B\tau/m^2]$ с длиной волны $\lambda[m]$ как функция концентрации вырождения электронов $N_e^{\ B}[m^{-3}]$ в ЭДП, линейного коэффициента поглощения накачки $\alpha[m^{-1}]$ и времени $\tau[cek]$ спонтанной рекомбинации электрон дырка в ЭДП. Когерентное суммирование лазерных пучков.
- Столкновение электрона с одиночным ионом. Прицельный параметр. Прицельный параметр столкновения, его физический смысл. Кулоновский логарифм, его физический смысл. Сечение электрон-ионных столкновений.
- Коэффициент преломления, его выражение через поляризацию и электрическое поле. Поляризация свободных и связанных зарядов при воздействии гармонического (лазерного) поля.

- Волновое уравнение Максвелла и его решение. Комплексный показатель преломления, для полностью ионизованной плазмы. Его выражение через плазменную частоту, частоту переменного гармонического электрического поля и время электрон-ионных столкновений.
- Распространение света в проводящей среде при длине волны короче критической. Механизм поглощения. Коэффициент поглощения для интенсивности света, его выражение через мнимую часть комплексного коэффициента преломления.
- Зависимость энергии свободного сталкивающегося электрона от времени воздействия лазерного излучения с заданной интенсивностью и длиной волны. Предельная (максимальная) энергия.
- Зависимость кинетической энергии W_e^q свободного несталкивающегося электрона от интенсивности I_L и длины волны λ лазерного излучения. Предельные случаи: 1. $W_e^q << m_o c^2$ (нерелятивистские интенсивности). 2. $W_e^q >> m_o c^2$ (релятивистские интенсивности, сверхсильные поля). ($m_o c^2$ энергия покоя электрона).
- Давление $P_{\phi}[\Pi a]$ однонаправленного пучка фотонов (лазерный пучок) интенсивностью $I[Br/m^2]$ на плоскую поверхность вещества с коэффициентом отражения r в зависимости от угла падения ϕ . Вещество за поверхностью полностью поглощает проникающее в него лазерное излучение.
- Давление на мишень при её испарении лазерным излучением как функция его интенсивности, скорости разлёта частиц и КПД преобразования свет испарённое вещество.
- Давление и температура плазмы как функция лазерной интенсивности и длины волны при концентрации электронов больше критической (гидродинамический режим).
- Коэффициент прозрачности потенциального барьера, его зависимость от электрического поля (и интенсивности) лазерного излучения.
- Параметр Келдыша для туннельного эффекта при лазерном воздействии (условие квазистатичности).
- Механизм лавинной ионизации. Пороговая интенсивность света как функция длины волны, длительности лазерного импульса и давления газа.
- Получение плотной высокотемпературной плазмы методом абляционной имплозии полой сферической мишени при лазерном термоядерном синтезе (ЛТС). Зависимость предельно достижимой (максимальной) концентрации ионов плазмы от абляционного давления.
- Термоядерные реакции: D-D и D-T. Физический механизм реакции ядерного синтеза. Сечение термоядерной реакции, его зависимость от температуры.
- Вероятность термоядерной D-T реакции как функция времени удержания τ_y , коэффициента прозрачности потенциального барьера $D_{\text{Б}}$, скорости ядер V, сечения их столкновений $\sigma_{\text{ст}}$ и концентрации D-T смеси N_{DT} .
- Максимальная концентрации ядер $N_{max}[M^{-3}]$, достигаемая в центре полой сферической мишени, как функция лазерного абляционного давления $P_L[\Pi a]$, толщины слоя твёрдого рабочего вещества Δr , начального радиуса мишени r_M и начальной концентрации атомов рабочего вещества $N_0[M^{-3}]$.
- Лазерное воздействие на свободный электрон. Невозможность поглощения свободным электроном фотона.
- Предельное значение температуры нагрева столкновительной плазмы
- Резонансное световое давление лазерного излучения на атомы и ионы. Принцип охлаждения микрочастиц с помощью лазерного излучения.

14. Материально-техническая база, информационные технологии, программное обеспечение и информационные справочные системы

- 1. А.З.Грасюк. Взаимодействие излучения с веществом. М., 2004.
- 2. Н.И.Коротеев, И.Л. Шумай Физика мощного лазерного излучения. М.: Наука, 1991.

- 3. С.А.Ахманов, С.Ю.Никитин. **Физическая оптика.** Изд-во МГУ, 1998. Дополнительная литература
 - 1. Ю. А. Ильинский, Л.В.Келдыш. **Взаимодействие электромагнитного излучения с** веществом. Изд-во МГУ, 1989

Материально-техническое обеспечение

В соответствии с требованиями п.5.3. образовательного стандарта МГУ по направлению подготовки «Физика».

Для лекционной части курса требуются аудитория, оборудованная мультимедийным проектором, управляющим компьютером, экраном и обычной учебной доской.