Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный университет имени М.В.Ломоносова Филиал Московского государственного университета имени М.В.Ломоносова в городе Сарове

УТВЕРЖДАЮ

Директор филиала МГУ в г. Сарове член-корреспондент РАН В.В.Воеводин

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Наименование дисциплины:

ЛАЗЕРНАЯ ОПТОАКУСТИЧЕСКАЯ ДИАГНОСТИКА

Уровень высшего образования: Магистратура
Направление подготовки:
03.04.02 Физика
Направленность (профиль) ОПОП:
Лазерная нелинейная оптика и фотоника
Квалификация «Магистр» Форма обучения: Очная
- · · ·

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки 03.04.02 Физика в редакции приказа по МГУ от 30 декабря 2020 г. №1366.

Авторы-составители:

Д.ф.-м.н., профессор Карабутов Александр Алексеевич, кафедра общей физики и волновых процессов физического факультета МГУ

Аннотация к рабочей программе дисциплины

«Лазерная оптоакустическая диагностика»

В курсе изучаются физические процессы при нерезонансном взаимодействии переменного лазерного излучения с веществом.

Рассматриваются нестационарные тепловые и акустические поля, возбуждаемые при поглощении лазерного излучения. Анализируются физические механизмы оптико-акустических явлений. Проведена классификация основных применений этих явлений.

Изложены теоретические основы описания оптико-акустических явлений. Обсуждаются экспериментальные схемы лазерной оптоакустической диагностики и их практическая реализация. Приведены конкретные примеры оптоакустической диагностики в биомедицине и структуроскопии конструкционных материалов. Даны элементы теории цифровой обработки сигналов.

Разделы рабочей программы

- 1. Место дисциплины в структуре основной профессиональной образовательной программы высшего образования (ОПОП ВО).
- 2. Входные требования для освоения дисциплины (модуля), предварительные условия (при наличии)
- **3.** Результаты обучения по дисциплине (модулю), соотнесенные с формируемыми компетенциями
- 4. Форма обучения.
- 5. Язык обучения.
- 6. Содержание дисциплины.
- 7. Объем дисциплины
- **8.** Структурированное по темам (разделам) содержание дисциплины (модуля) с указанием отведенного на них количества академических часов и виды учебных занятий
- 9. Текущий контроль и промежуточная аттестация.
- **10.** Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю).
- 11. Шкала оценивания.
- 12. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости.
- 13. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.
- **14.** Материально-техническая база, информационные технологии, программное обеспечение и информационные справочные системы

1. Место дисциплины в структуре ОПОП ВО

В результате освоения дисциплины «Лазерная оптоакустическая диагностика» обучающийся кроме знаний предмета получает навыки применения ранее полученных знаний для решения новых научных и практических задач.

Дисциплина читается в 3 семестре и относится к вариативной части программы 9курс по выбору)

2. Входные требования для освоения дисциплины (модуля), предварительные условия Освоение дисциплин «Электромагнетизм», «Электродинамика», «Оптика», «Математический анализ», «Квантовая механика», «Дифференциальные уравнения», «Теория колебаний», «Теория волн».

3. Результаты обучения по дисциплине (модулю), соотнесенные с формируемыми компетенциями

В результате освоения дисциплины у обучающихся должны быть сформированы:

Формируемые	Планируемые результаты обучения по дисциплине (модулю)				
компетенции					
(код компетенции)					
Способность	Знать основные законы и направления современных научных				
использовать знания	исследований в области лазерной физики, нелинейной оптики и				
современных проблем	• • •				
и новейших	фотоники.				
достижений в области лазерной физики,	Уметь на основе фундаментальных знаний в области лазерной				
нелинейной оптики и	физики, нелинейной оптики и фотоники, определять возможные				
фотоники в своей научно-	направления научных исследований.				
исследовательской	Владеть необходимой информацией из современных				
деятельности (СПК-1)	отечественных и зарубежных источников по тематике избранного				
, ,	направления исследования в области лазерной физики,				
	нелинейной оптики и фотоники.				
Способность	Знать базовые принципы организации научных исследований с				
организовать и планировать	использованием информационных технологий, основные методики				
физические	работы на современном научном оборудовании в области лазерной				
исследования, ставить конкретные задачи	физики, нелинейной оптики и фотоники.				
научных	Уметь используя знания в области лазерной физики, нелинейной				
исследований в области лазерной	оптики и фотоники проводить научные исследования.				
физики, нелинейной	Владеть навыками планирования научного исследования, анализа				
оптики и фотоники и	получаемых результатов, обобщения, оформления и публичного				
решать их с помощью	получаемых результатов, обобщения, оформления и публичного				
современной	представления полученных результатов.				
аппаратуры,					
оборудования и					

информационных технологий (СПК-2) Способность Знать основные направления инновационного развития в области определять основные лазерной физики, нелинейной оптики и фотоники. направления внедрения научных Уметь проводить необходимый анализ современных тенденций результатов в области научных инноваций в области лазерной физики, нелинейной лазерной физики, нелинейной оптики и оптики и фотоники для подготовки предложений по внедрению фотоники (СПК-3). полученных научных результатов. Владеть методами обоснования возможного применения полученных научных результатов с учетом современных достижений в области лазерной физики, нелинейной оптики и

4. Форма обучения: очная

фотоники.

5. Язык обучения: русский

6. Содержание дисциплины:

Тема 1. Фотоакустические явления.

Введение. Исторический обзор исследований фотоакустических явлений. Механизмы оптической генерации звука. Прямая и обратная задачи лазерной оптоакустики. Лазерная оптоакустическая диагностика. Фотоакустическая спектроскопия и микроскопия. Лазерная оптико-акустическая томография. Лазерно-ультразвуковая структуроскопия.

Тема 2. Нестационарный теплообмен на границе прозрачной и поглощающей свет среды. Задача нестационарного теплообмена на границе двух сред. Коэффициент теплопроводности и коэффициент диффузии тепла. Связанная и несвязанная задача термоупругости. Решение задачи в спектральной форме. Свободное распространение тепловых волн. Границы применимости уравнения диффузии тепла. Теплообмен в случае поверхностного и объемного поглощения света. Тепловая активность. Функциональная связь температуры поверхности и формы лазерного импульса.

Тема 3. Термооптическое возбуждение звука

Задача термооптического возбуждения звука в одномерном случае. Акустический импеданс. Потенциал колебательной скорости. Свободное распространение акустической волны. Связь колебательной скорости и давления. Отражение и прохождение акустических волн на границе сред. Граничные условия при свободной, закрепленной и импедансной границах. Решение задачи термооптического возбуждения звука в спектральной форме. Передаточные функции. Объемное поглощение света. Передаточные функции при закрепленной, свободной и импедансной границах. Спектральный диапазон эффективной генерации звука. Объемное поглощение света. Форма оптико-акустического импульса при закрепленной, свободной и импедансной границах. Зависимость амплитуды и длительности ОА-импульса от длительности лазерного импульса. Поверхностное поглощение света. Передаточные функции при закрепленной, свободной и импедансной границах. Спектральный диапазон эффективной

генерации звука. Поверхностное поглощение света. Форма оптико-акустического импульса при закрепленной, свободной и импедансной границах. Функциональная связь формы оптико-акустического сигнала и формы лазерного импульса при поверхностном поглощении света.

Тема 4. Термооптическое возбуждение трехмерных акустических полей. Плоские, Задача термооптического возбуждения трехмерных акустических полей. Плоские, цилиндрические и сферические акустические волны. Спектр акустического поля, возбуждаемого конечным лазерным пучком. Конус «эффективного озвучивания». Поэтапный анализ термооптического возбуждения ультразвука. Дифракционная, диссипативная и нелинейная трансформация импульсных ультразвуковых пучков. Решение прямой задачи оптоакустики.

Тема 5. Методы регистрации оптоакустических сигналов

Пьезорегистрация широкополосных сигналов. Предельная чувствительность пьезорегистрации акустических импульсов. Интерферометрия как метод регистрации ультразвуковых колебаний. Проблема стабилизации Лазерное рабочей точки. гетеродинирование. Методы, использующие пробный пучок – наведенной линзы, модулированного отражения, мираж-эффект. Предельная чувствительность оптических методов регистрации ультразвуковых колебаний. Цифровая обработка импульсных сигналов. Корреляционный анализ. Деконволюция и гипергауссовская фильтрация.

Тема 6. Лазерная оптоакустическая томография биотканей

Рассеивающие среды. Коэффициенты рассеяния, поглощения, экстинкции света. Изотропное и малоугловое рассеяние. Приведенный коэффициент рассеяния. Диффузия света в мутной среде. Распределение интенсивности света в мутной среде. Оптические свойства биотканей. Терапевтический диапазон. Основные поглотители света в биотканях. Оптико-акустическое измерение оптических характеристик биотканей. Теневой и эхо-режимы. Измерение эффективности термооптической генерации звука в биоткани. Оптико-акустическая спектроскопия биотканей. Оптико-акустический сигнал от поглощающей частицы. Вклад теплового расширения частицы и иммерсионной среды. Спектр оптико-акустического сигнала в среде с поглощающими частицами.

Тема 7. Лазерно-ультразвуковая структуроскопия

Лазерно-ультразвуковое исследование структуры гетерогенных сред. Чувствительность выявления неоднородности среды. Измерение модулей упругости твердых сред. Контроль остаточных и монтажных напряжений. Измерение пористости лазерно-ультразвуковыми системами. Лазерно-ультразвуковая диагностика слоистых сред. Лазерно-ультразвуковая профилометрия.

Тема 8. Фотоакустическая спектроскопия и микроскопия.

Фотоакустический спектрометр. Фотоакустический газоанализатор. Фотоакустическая спектроскопия жидких сред.

7. Объем дисциплины

			объ	ем учебной	нагру	узки в ак	. часах				
	COCTL		COCTE	COCTE	COCTE	COCTS		в том числе ауд. занятий			Самостоятельная работа студентов
	Трудоемкость	в зачетных	Общая трудоемкость	Общая аудиторная нагрузка	Лекций	Семинаров					
НАЗВАНИЕ ДИСЦИПЛИНЫ											
Лазерная оптоакустическая диагностика	2		72	36	17	17	36				

8. Структурированное по темам (разделам) содержание дисциплины (модуля) с указанием отведенного на них количества академических часов и виды учебных занятий

Изучение курса «Лазерная оптоакустическая диагностика» включает в себя лекции, на которых рассматривается теоретическое содержание курса, обсуждение вопросов, обозначенных в темах дисциплины; самостоятельную работу, заключающуюся в подготовке к лекционным занятиям, выполнения домашних заданий. По вопросам, вызывающим затруднения, проводятся консультации.

19			•	бной на оемкост	Форма текущего контроля успеваемости и промежуточной аттестации		
Ne tem	Наименование раздела дисциплины		Лекции	Научно- практические	Семинары	Самостоятельная работа	
1	Фотоакустические явления	4	1		1	2	
2	Нестационарный теплообмен на границе прозрачной и поглощающей свет среды Термооптическое возбуждение звука		2	-	2	5	Собеседование,
3			3	-	3	4	опрос
4	Термооптическое возбуждение трехмерных акустических полей	8	2		2	4	

итого:		72	18	-	18	36	• •
	Промежуточная аттестация	4				4	экзамен в устной форме
8	Фотоакустическая спектроскопия и микроскопия	8	2		2	5	
7	Лазерно-ультразвуковая структуроскопия	10	3		3	5	
6	Лазерная оптоакустическая томография биотканей	10	3		3	4	
5	Методы регистрации оптоакустических сигналов	8	2		2	5	

9. Текущий контроль и промежуточная аттестация.

Текущий контроль по дисциплине «Лазерная оптоакустическая диагностика» осуществляется на лекциях и заключается в оценке активности слушателей, качества ответов на вопросы лектора, аргументированности позиции студента, оценивается широта используемых им теоретических знаний. В семестре в конце некоторых тем проводятся письменные контрольные работы (1 час.).

Промежуточная аттестация по дисциплине «Лазерная оптоакустическая диагностика» проводится в форме экзамена. Результаты сдачи экзамена оцениваются по шкале «неудовлетворительно», «удовлетворительно», «хорошо», «отлично». Оценки «отлично», «хорошо», «удовлетворительно» означают успешное прохождение промежуточной аттестации.

10. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю).

Требования к структуре и содержанию фонда оценочных средств текущего контроля и промежуточной аттестации по дисциплине

Перечень оценочных средств, применяемых на каждом этапе проведения текущего контроля и промежуточной аттестации по дисциплине, представлены в таблице

Наименование		Представление
	Краткая характеристика оценочного средства	оценочного
оценочного средства		средства в фонде
	Средство контроля, организованное как	Перечень тем,
Taylamyyyaayyy	короткий письменный ответ на поставленный	изучаемых в
Тематический опрос	вопрос по тематике предыдущей или текущей	рамках
(в форме ответов на	лекции, рассчитанное на выяснение объема и	дисциплины
вопросы)	качества знаний, усвоенных обучающимися	
	по определенному разделу, теме, проблеме.	
	Средство контроля, организованное как	Перечень тем,
	свободная беседа, дискуссия по тематике	изучаемых в
Соборонования	изучаемой дисциплины, рассчитанное на	рамках
Собеседование (в форме беседы, дискуссии по теме)	выяснение объема знаний обучающегося по	дисциплины
	всем изученным разделам, темам; свободного	
	использования терминологии для	
	аргументированного выражения собственной	
	позиции.	

Оценочные средства промежуточной аттестации								
	Средство,	Перечень вопросов						
Короткая письменная	сформированность систематических				к экзамену			
работа	представлений	ний о методах научно-						

11. Шкала оценивания.

Планируемые	Критерии оценивания результатов обучения						
результаты	2	3	4	5			
обучения							
ЗНАТЬ:	Отсутствие знаний	В целом	В целом	Успешные и			
принципы	принципов работы	успешные, но	успешное, но	систематическ			
работы	оптоакустических	не	содержащее	ие знания			
оптоакустичес	систем	систематическ	отдельные	принципов			
ких систем		ие знания	пробелы	работы			
ОПК-3.Б 3-6		принципов	знания	оптоакустичес			
		работы	принципов	ких систем			
		оптоакустичес	работы				
		ких систем	оптоакустичес				
			ких систем				
УМЕТЬ:	Отсутствие умения	В целом	В целом	Успешное и			
работать с	работать с	успешное, но	успешное, но	систематическ			
оптоакустичес	оптоакустическими	не	содержащее	ое умение			
кими	устройствами	систематическ	отдельные	работать с			
устройствами		ое умение	пробелы	оптоакустичес			
		работать с	умение	кими			
ОПК-3.Б У-6		оптоакустичес	работать с	устройствами			
		кими	оптоакустичес				
		устройствами	КИМИ				
			устройствами				
ВЛАДЕТЬ:	Отсутствие/фрагмен	В целом	В целом	Успешное и			
методами	тарное владение	успешное, но	успешное, но	систематическ			
описания и	методами описания	не	содержащее	ое владение			
расчета	и расчета	систематическ	отдельные	методами			
оптоакустичес	оптоакустических	ое владение	пробелы	описания и			
ких устройств	устройств	методами	владение	расчета			
ОПК-3.Б В-6		описания и	методами	оптоакустичес			
		расчета	описания и	ких устройств			
		оптоакустичес	расчета				
		ких устройств	оптоакустичес				
			ких устройств				

12. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости.

Материалы текущего контроля успеваемости обучающихся:

Пример:

1. Свободная диффузия тепла. Длина диффузии.

- 2. Граничные условия в задаче термооптического возбуждения звука.
- 3. Поэтапный подход к решению задачи эволюции оптоакустических сигналов.
- **4.** Конус «эффективного озвучивания».
- 5. Коэффициент анизотропии рассеяния света.
- 6. Особенности импульсного нагрева микронеоднородной среды.

13. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.

Материалы промежуточного контроля успеваемости обучающихся в форме экзамена:

- 1. Фотоакустический эффект и условия его проявления.
- 2. Механизмы фотоакустического эффекта и их сравнительная эффективность.
- 3. Тепловой механизм фотоакустического эффекта и его проявления.
- 4. Фотоакустическая спектроскопия
- 5. Лазерная оптико-акустическая томография
- 6. Лазерно-ультразвуковая структуроскопия.
- 7. Прямая и обратная задачи оптоакустики.
- 8. Задача нестационарного теплообмена на границе прозрачной и поглощающей сред.
- 9. Свободная диффузия тепла. Длина затухания тепловой волны. Фазовая скорость тепловой волны.
- 10. Соотношение потоков в прозрачную и поглощающую среду на их границе. Тепловая активность.
- 11. Условия объемного и поверхностного поглощения света. Диапазон частот применимости уравнения диффузии тепла.
- 12. Функциональная связь температуры облучаемой поверхности и интенсивности света при поверхностном поглощении света.
- 13. Распространение, отражение и преломление акустических волн на границе сред. Акустический импеданс.
- 14. Уравнение термооптического возбуждения звука.
- 15. Задача о термооптическом возбуждении звука в однородно поглощающей среде.
- 16. Решение прямой задачи оптоакустики.
- 17. Термооптическое возбуждение плоских акустических волн. Метод передаточных функций.
- 18. Оптоакустические сигналы при жесткой границе поглощающей среды.
- 19. Оптоакустические сигналы при свободной границе поглощающей среды.
- 20. Оптоакустические сигналы при импедансной границе поглощающей среды.
- 21. Термооптическое возбуждение звука при поверхностном поглощении света.
- 22. Термооптическое возбуждение звука ограниченным лазерным пучком.
- 23. Передаточные функции возбуждения трехмерных ультразвуковых полей. Конус «эффективного озвучивания».
- 24. Дифракционная трансформация оптоакустических сигналов.
- 25. Нелинейная и диссипативная трансформация оптоакустических сигналов.
- 26. Пьезоэлектрические преобразователи для регистрации оптоакустических сигналов.
- 27. Предельная чувствительность пьезоэлектрической регистрации оптоакустических сигналов.
- 28. Оптические методы регистрации оптоакустических сигналов. Интерферометрия, «мираж» эффект, модуляционные методы.
- 29. Ограничение чувствительности регистрации оптоакустических сигналов дробовыми шумами.

- 30. Распространение света в микронеоднородных средах. Коэффициенты рассеяния, поглощения и экстинкции света.
- 31. Распределение интенсивности света в «мутной» среде.
- 32. Оптоакустические сигналы, возбуждаемые в «мутной» среде.
- 33. Понятие об оптоакустической томографии. Пространственное разрешение оптоакустической томографии.
- 34. Оптоакустическое измерение оптических характеристик биотканей.
- 35. Оптоакустическая спектроскопия биотканей.
- 36. Фотоакустическая спектроскопия. Газомикрофонная ячейка.
- 37. Метод тепловой линзы.
- 38. Лазерно-ультразвуковая структуроскопия. Измерение скорости ультразвука.
- 39. Лазерно-ультразвуковая структуроскопия слоистых сред.
- 40. Лазерно-ультразвуковая диагностика пористости.
- 41. Лазерно-ультразвуковой контроль напряженных состояний твердых сред.
- 42. Лазерно-ультразвуковая профилометрия.

14. Материально-техническая база, информационные технологии, программное обеспечение и информационные справочные системы

Основная литература.

- 1. Гусев В.Э., Карабутов А.А. Лазерная оптоакустика. М., Наука, 1991.
- 2. Жаров В.П., Летохов В.С. Лазерная оптико-акустическая спектроскопия. М., Наука, 1984.
- 3. Там Э. Фотоакустика: спектроскопия и другие применения. // В сборнике "Сверхчувствительная лазерная спектроскопия" (под ред. Клайджера Д.) – М., Мир, 1986, с.13-137.
- 5. Бондаренко А.Н. Лазерные методы возбуждения и регистрации акустических сигналов. М., Изд-во стандартов, 1989.
- 6. Scruby C.B., Drain L.E. *Laser-Ultrasonics. Techniques and Applications*. Bristol, Adam Hilger, 1990.

Дополнительная литература.

- 1. Karabutov A.A., Savateeva E.V., Podymova N.B., Oraevsky A.A. Backward mode detection of laser-induced wide-band ultrasonic transients with optoacoustic transducer *Journal of Applied Physics*, издательство *AIP Publishing (United States)*, том 87, № 4, с. 2003-2014 (2000)DOI
- 2. Грашин П.С., Карабутов А.А., Ораевский А.А., Пеливанов И.М., Подымова Н.Б., Саватеева E.B., Соломатин B.C. Распределение интенсивности лазерного излучения сильнорассеивающих средах: моделирование методом Монте-Карло, теоретический анализ и оптико-акустических измерений Квантовая электроника, Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (Москва), том 32, № 10, с. 868-874 (2002) DOI
- 3. Barry P. Payne Vasan Venugopalan, Bora B. Mikic'Norman S. Nishioka Optoacoustic determination of optical attenuation depth using interferometric detection. Journal of Biomedical Optics 8(2), 264–272 (April 2003)
- 4. Саватеева Е.В., Карабутов А.А., Панченко В.Я. Лазерный ультразвуковой и оптикоакустический сканер в сборнике *Труды Курчатовского института* 2006.
- 5. Саватеева Е.В., Карабутов А.А., Панченко В.Я. Лазерная оптико-акустическая спектроскопия биотканей/ Современные лазерно-информационные и лазерные технологии, Сборник трудов ИПЛИТ, место издания Интерконтакт Наука, с. 183-187 (2005).

- 6. Khokhlova T.D., Pelivanov I.M., Karabutov A.A. Methods of optoacoustic diagnostics of biological tissues *Acoustical Physics*, издательство *Maik Nauka/Interperiodica Publishing (Russian Federation)*, том 55, № 4-5, с. 674-684 (2009)
- 7. Karabutov Jr A.A., Karabutov A.A., Sapozhnikov O.A. Determination of the elastic properties of layered materials using laser excitation of ultrasound. *Physics of Wave Phenomena*, издательство *Allerton Press Inc.* (*United States*), том 18, № 4, с. 297-302 (2010) DOI
- 8. André Conjusteau, Vyacheslav V. Nadvoretskiy, Sergey A. Ermilov and Alexander A.Oraevsky. Generation of wide-directivity broadband ultrasound by short laser pulses Proc. of SPIE Vol. 8581 85814U-2 (2013)
- 9. Filimonova T.A., Volkov D.S., Proskurnin M.A., Pelivanov I.M. Optoacoustic spectroscopy for real-time monitoring of strongly light-absorbing solutions in applications to analytical chemistry. *Photoacoustics*, том 1, \mathbb{N} 1, c. 54-61 (2013)
- 10. Bychkov A.S., Cherepetskaya E.B., Karabutov A.A., Makarov V.A. Laser optoacoustic tomography for the study of femtosecond laser filaments in air *Laser Physics Letters*, издательство *Wiley VCH Verlag GmbH & CO. KGaA (Germany)*, том 13, № 8, с. 085401 (2016)
- 11. Bychkov Anton S., Cherepetskaya Elena B., Karabutov Alexander A., Makarov Vladimir A. Toroidal sensor arrays for real-time photoacoustic imaging. *Journal of Biomedical Optics*, издательство *S P I E International Society for Optical Engineering (United States)*, том 22, № 7, с. 076003 (2017)
- 12. Vasily Zarubin, Anton Bychkov, Alexander Karabutov, Varvara Simonova, Elena Cherepetskaya/ Laser-induced ultrasonic imaging for measurements of solid surfaces in optically opaque liquids [Invited] *Applied optics*, издательство *Optical Society of America (United States)*, том 57, № 10, с. C70-C76 (2018)
- 13. Жаринов А.Н., Карабутов А.А., Миронова Е.А., Пичков С.Н., Саватеева Е.В., Симонова В.А., Шишулин Д.Н., Черепецкая Е.Б. Лазерно-ультразвуковое исследование остаточных напряжений в трубах из аустенитной стали. *Акустический журнал*, издательство *Наука (М.)*, том 65, № 3, с. 372-381 (2019)

Интернет-ресурсы. www.optoacoustic.ru

Материально-техническое обеспечение

В соответствии с требованиями п.5.3. образовательного стандарта МГУ по направлению подготовки « Φ изика».

Для лекционной части курса требуются аудитория, оборудованная мультимедийным проектором, интерактивной доской, и управляющим компьютером. Также необходимо наличие экрана и обычной учебной доски.